Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_2_a4, author = {V. N. Anisimov and V. L. Litvinov}, title = {About one method for replacing variables for a wavean equation describing vibrations of systems with moving boundaries}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {188--199}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a4/} }
TY - JOUR AU - V. N. Anisimov AU - V. L. Litvinov TI - About one method for replacing variables for a wavean equation describing vibrations of systems with moving boundaries JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 188 EP - 199 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a4/ LA - ru ID - SVMO_2020_22_2_a4 ER -
%0 Journal Article %A V. N. Anisimov %A V. L. Litvinov %T About one method for replacing variables for a wavean equation describing vibrations of systems with moving boundaries %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2020 %P 188-199 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a4/ %G ru %F SVMO_2020_22_2_a4
V. N. Anisimov; V. L. Litvinov. About one method for replacing variables for a wavean equation describing vibrations of systems with moving boundaries. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 2, pp. 188-199. http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a4/
[1] G. N. Savin, O. A. Goroshko, Dynamics of a thread of variable length, Naukova Dumka, Kiev, 1962, 332 pp. (In Russ.)
[2] Yu. P. Samarin, “On a nonlinear problem for a wave equation in a one-dimensional space”, Applied Mathematics and Mechanics, 26, 3 (1964), 77–80 (In Russ.)
[3] V. N. Anisimov, V. L. Litvinov, “Investigation of resonant properties of mechanical objects with moving boundaries using the Kantorovich-Galerkin method”, Bulletin of Samara State Technical University (Ser. “Physical and Mathematical Sciences”), 1(18) (2009), 149–158 (In Russ.) | DOI | Zbl
[4] O. A. Goroshko, G. N. Savin, Introduction to the mechanics of deformable one-dimensional bodies of variable length, Naukova Dumka, Kiev, 1971, 270 pp. (In Russ.)
[5] A. I. Vesnitsky, Waves in systems with moving boundaries and loads, Fizmatlit, Moscow, 2001, 320 pp. (In Russ.)
[6] A. I. Vesnitsky, “Inverse problem for a one-dimensional resonator changing its dimensions in time”, Izv. vuzov. Radiofizika, 10 (1971), 1538–1542 (In Russ.)
[7] K. A. Barsukov, G. A. Grigoryan, “On the theory of a waveguide with movable boundaries”, Izv. vuzov. Radiofizika, 2 (1976), 280–285 (In Russ.)
[8] V. L. Litvinov, V. N. Anisimov, Mathematical modeling and research of vibrations of one-dimensional mechanical systems with moving boundaries: monograph, Samar. State Tech. University, Samara, 2017, 149 pp. (In Russ.)
[9] V. N. Anisimov, V. L. Litvinov, I. V. Korpen, “On a method for obtaining an analytical solution of a wave equation describing vibrations of systems with moving faces”, Bulletin of the Samara State Technical University (Ser. “Physical and Mathematical Sciences”), 2012, no. 3(28), 145–151 (In Russ.) | DOI | MR | Zbl
[10] A. A. Lezhneva, “Flexural vibrations of beams of variable length”, Izv. Akad. Nauk SSSR. Mekh. tverd. tela, 1970, no. 1, 159–161 (In Russ.)
[11] L. B. Kolosov, T. I. Zhigula, “Longitudinal and transverse vibrations of the rope string of the lifting installation”, Izv. Vyssh. Uchebn. Zaved. Gorn. Zh., 1981, no. 3, 83–86 (In Russ.)
[12] W. D. Zhu, Y. Chen, “Theoretical and experimental investigation of elevator cable dynamics and control”, J. Vibr. Acoust, 2006, no. 1, 66–78 | DOI
[13] Y. Shi, L. Wu, Y. Wang, “Nonlinear analysis of natural frequencies of a cable system”, J. Vibr. Eng., 2006, no. 2, 173–178
[14] L. Wang, Y. Zhao, “Multiple internal resonances and non–planar dynamics of shallow suspended cables to the harmonic excitations”, J. Sound Vib, 2009, no. 1–2, 1–14 (In English) | DOI
[15] Y. Zhao, L. Wang, “On the symmetric modal interaction of the suspended cable: three–to one internal resonance”, J. Sound Vib, 2006, no. 4–5, 1073–1093 (In English) | DOI
[16] V. L. Litvinov, V. N. Anisimov, “Transverse vibrations of a rope moving in the longitudinal direction”, Proceedings of the Samara scientific center of the Russian Academy of Sciences, 19:4 (2017), 161–165 (In Russ.)
[17] V. L. Litvinov, “Investigation of free vibrations of mechanical objects with moving boundaries using the asymptotic method”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 16:1 (2014), 83–88 (In Russ.) | MR | Zbl
[18] V. L. Litvinov, “Solving boundary value problems with moving boundaries using the method of replacing variables in a functional equation”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 15:3 (2013), 112–119 (In Russ.) | Zbl
[19] V. I. Erofeev, D. A. Kolesov, E. E. Lisenkova, “Investigation of wave processes in a one-dimensional system lying on an elastic-inertial base with a moving load”, Bulletin of Scientific and Technical Development, 2013, no. 6(70), 18–29 (In Russ.)
[20] V. L. Litvinov, “Transverse vibrations of a viscoelastic rope lying on an elastic base, taking into account the influence of the resistance forces of the medium”, Bulletin of Scientific and Technical Development, 2015, no. 4(92), 29–33 (In Russ.)
[21] V. L. Litvinov, “Longitudinal vibrations of a rope of variable length with a load at the end”, Bulletin of Scientific and Technical Development, 2016, no. 1(101), 19–24 (In Russ.) | MR
[22] V. L. Litvinov, “Exact and approximate solutions to the problem of vibrations of a rod of variable length”, Bulletin of Scientific and Technical Development, 2017, no. 9(121), 46–57 (In Russ.) | MR
[23] V. N. Anisimov, V. L. Litvinov, “Analytical method for solving a wave equation with a wide class of conditions on moving boundaries”, Bulletin of Scientific and Technical Development, 2016, no. 2(102), 28–35 (In Russ.)
[24] N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Equations in partial derivatives of mathematical physics, Vysshaya shkola, Moscow, 1970 (In Russ.)
[25] V. L. Litvinov, V. N. Anisimov, “Application of the Kantorovich-Galerkin method for solving boundary value problems with conditions on moving boundaries”, Proceedings of the Russian Academy of Sciences. Solid mechanics, 2018, no. 2, 70–77 (In Russ.)