Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_2_a2, author = {T. N. Dragunov and K. E. Morozov and A. D. Morozov}, title = {On global dynamics in duffing equation with quasiperiodic perturbation}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {164--176}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a2/} }
TY - JOUR AU - T. N. Dragunov AU - K. E. Morozov AU - A. D. Morozov TI - On global dynamics in duffing equation with quasiperiodic perturbation JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 164 EP - 176 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a2/ LA - ru ID - SVMO_2020_22_2_a2 ER -
%0 Journal Article %A T. N. Dragunov %A K. E. Morozov %A A. D. Morozov %T On global dynamics in duffing equation with quasiperiodic perturbation %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2020 %P 164-176 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a2/ %G ru %F SVMO_2020_22_2_a2
T. N. Dragunov; K. E. Morozov; A. D. Morozov. On global dynamics in duffing equation with quasiperiodic perturbation. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 2, pp. 164-176. http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a2/
[1] Z. Jing, W. Ruiqi, “Complex dynamics in Duffing system with two external forcings”, Chaos, Solitons and Fractals, 23:2 (2005), 399–411 (In English) | DOI | MR | Zbl
[2] Z. Jing, J. Huang, J. Deng, “Complex dynamics in three-well duffing system with two external forcings”, Chaos, Solitons and Fractals, 33:3 (2007), 795–812 (In English) | DOI | MR | Zbl
[3] K. Yagasaki, “Second-order averaging and chaos in quasiperiodically forced weakly nonlinear oscillators”, Physica D: Nonlinear Phenomena, 44:3 (1990), 445–458 (In English) | DOI | MR | Zbl
[4] A. B. Belogortsev, “Quasiperiodic resonance and bifurcations of tori in the weakly nonlinear Duffing oscillator”, Physica D: Nonlinear Phenomena, 59:4 (1992), 417–429 (In English) | DOI | MR | Zbl
[5] A. D. Morozov, K. E. Morozov, “On quasiperiodic perturbations of two-dimensional Hamiltonian systems”, Differentsialnye uravneniya, 53:12 (2017), 1607–1615 (In Russ.) | DOI | MR | Zbl
[6] N. N. Bogolyubov, Yu. A. Mitropolskiy, Asymptotic methods in the theory of nonlinear oscillations, Fizmatgiz Publ., Moscow, 1958, 408 pp. (In Russ.) | MR
[7] A. D. Morozov, Quasi-conservative systems: cycles, resonances and chaos., v. 30, World Scientific, 1998, 325 pp. (In English) | MR | Zbl
[8] A. D. Morozov, Resonances, cycles and chaos in quasiconservative systems, NIC “Regulyarnaya i khaoticheskaya dinamika” Publ., Institut kompyuternykh issledovaniy, Moscow-Izhevsk, 2005, 424 pp. (In Russ.) | MR
[9] Ju. A. Mitropolskiy, O. B. Lykova, Integral manifolds in nonlinear mechanics, Nauka Publ., Moscow, 1973, 512 pp. (In Russ.) | MR
[10] V. K. Melnikov, “On stability of a center under time-periodic perturbations”, Trudy Moskovskogo matematicheskogo obschestva, 12 (1963), 3–52 (In Russ.) | MR | Zbl
[11] J. Sanders, “Melnikov's method and averaging”, Celestial Mechanics, 28:1–2 (1982), 171–181 (In English) | DOI | MR | Zbl
[12] S. Wiggins, Global Bifurcations and Chaos: Analytical Methods, Springer-Verlag, New York, Heidelberg, Berlin, 1988, 495 pp. (In English) | MR | Zbl
[13] S. Wiggins, Chaotic Transport in Dynamical Systems, Springer-Verlag, New York, Heidelberg, Berlin, 1992, 301 pp. (In English) | MR | Zbl
[14] L. P. Shilnikov, “On a Poincarè-Birkhoff problem,”, Mathematicheskiy sbornik, 74:3 (1967), 378–397 (In English) | MR
[15] A. D. Morozov, T. N. Dragunov, “On quasi-periodic perturbations of Duffing equation”, Discontinuity, Nonlinearity, and Complexity, 5:4 (2016), 377–386 (In English)