On global dynamics in duffing equation with quasiperiodic perturbation
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 2, pp. 164-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Duffing equation with small perturbation consisting of time-independent nonconservative part similar to Van der Pol equation and quasiperiodic two-frequency part with irrational frequency ratio. Similarly to the analysis of time-periodic perturbation we apply analysis of resonances implying averaging. To study solutions near unperturbed separatrix we apply adapted Melnikov's method. We establish that the number of "partly passable" resonance levels is finite and qualitative behavior of solutions near other resonance levels is determined by the autonomous part of perturbation. We also study solutions corresponding to a limit cycle generated by the autonomous part of the perturbation. We demonstrate how solutions of the averaged system behave when a limit cycle corresponding to a three-dimensional torus of the original system goes through a neighborhood of a resonance level. In the case when the unperturbed system has a separatrix loop we use Melnikov formula to establish the transversal intersection of the stable and unstable manifolds of a saddle solution. This fact implies the existence of homoclinic solutions and nonregular dynamics in a neighborhood of the unperturbed separatrix. Applying all these techniques allows us to describe the global behavior of solutions.
Keywords: two-dimensional dynamical systems, resonances, averaging, Melnikov method, Duffing equation, global dynamics.
Mots-clés : quasiperiodic perturbation, homoclinic solutions, Melnikov's formula
@article{SVMO_2020_22_2_a2,
     author = {T. N. Dragunov and K. E. Morozov and A. D. Morozov},
     title = {On global dynamics in duffing equation with quasiperiodic perturbation},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {164--176},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a2/}
}
TY  - JOUR
AU  - T. N. Dragunov
AU  - K. E. Morozov
AU  - A. D. Morozov
TI  - On global dynamics in duffing equation with quasiperiodic perturbation
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2020
SP  - 164
EP  - 176
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a2/
LA  - ru
ID  - SVMO_2020_22_2_a2
ER  - 
%0 Journal Article
%A T. N. Dragunov
%A K. E. Morozov
%A A. D. Morozov
%T On global dynamics in duffing equation with quasiperiodic perturbation
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2020
%P 164-176
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a2/
%G ru
%F SVMO_2020_22_2_a2
T. N. Dragunov; K. E. Morozov; A. D. Morozov. On global dynamics in duffing equation with quasiperiodic perturbation. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 2, pp. 164-176. http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a2/

[1] Z. Jing, W. Ruiqi, “Complex dynamics in Duffing system with two external forcings”, Chaos, Solitons and Fractals, 23:2 (2005), 399–411 (In English) | DOI | MR | Zbl

[2] Z. Jing, J. Huang, J. Deng, “Complex dynamics in three-well duffing system with two external forcings”, Chaos, Solitons and Fractals, 33:3 (2007), 795–812 (In English) | DOI | MR | Zbl

[3] K. Yagasaki, “Second-order averaging and chaos in quasiperiodically forced weakly nonlinear oscillators”, Physica D: Nonlinear Phenomena, 44:3 (1990), 445–458 (In English) | DOI | MR | Zbl

[4] A. B. Belogortsev, “Quasiperiodic resonance and bifurcations of tori in the weakly nonlinear Duffing oscillator”, Physica D: Nonlinear Phenomena, 59:4 (1992), 417–429 (In English) | DOI | MR | Zbl

[5] A. D. Morozov, K. E. Morozov, “On quasiperiodic perturbations of two-dimensional Hamiltonian systems”, Differentsialnye uravneniya, 53:12 (2017), 1607–1615 (In Russ.) | DOI | MR | Zbl

[6] N. N. Bogolyubov, Yu. A. Mitropolskiy, Asymptotic methods in the theory of nonlinear oscillations, Fizmatgiz Publ., Moscow, 1958, 408 pp. (In Russ.) | MR

[7] A. D. Morozov, Quasi-conservative systems: cycles, resonances and chaos., v. 30, World Scientific, 1998, 325 pp. (In English) | MR | Zbl

[8] A. D. Morozov, Resonances, cycles and chaos in quasiconservative systems, NIC “Regulyarnaya i khaoticheskaya dinamika” Publ., Institut kompyuternykh issledovaniy, Moscow-Izhevsk, 2005, 424 pp. (In Russ.) | MR

[9] Ju. A. Mitropolskiy, O. B. Lykova, Integral manifolds in nonlinear mechanics, Nauka Publ., Moscow, 1973, 512 pp. (In Russ.) | MR

[10] V. K. Melnikov, “On stability of a center under time-periodic perturbations”, Trudy Moskovskogo matematicheskogo obschestva, 12 (1963), 3–52 (In Russ.) | MR | Zbl

[11] J. Sanders, “Melnikov's method and averaging”, Celestial Mechanics, 28:1–2 (1982), 171–181 (In English) | DOI | MR | Zbl

[12] S. Wiggins, Global Bifurcations and Chaos: Analytical Methods, Springer-Verlag, New York, Heidelberg, Berlin, 1988, 495 pp. (In English) | MR | Zbl

[13] S. Wiggins, Chaotic Transport in Dynamical Systems, Springer-Verlag, New York, Heidelberg, Berlin, 1992, 301 pp. (In English) | MR | Zbl

[14] L. P. Shilnikov, “On a Poincarè-Birkhoff problem,”, Mathematicheskiy sbornik, 74:3 (1967), 378–397 (In English) | MR

[15] A. D. Morozov, T. N. Dragunov, “On quasi-periodic perturbations of Duffing equation”, Discontinuity, Nonlinearity, and Complexity, 5:4 (2016), 377–386 (In English)