Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_2_a1, author = {I. V. Boykov and V. A. Ryazantsev}, title = {On an iterative method for solution of direct problem for nonlinear hyperbolic differential equations}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a1/} }
TY - JOUR AU - I. V. Boykov AU - V. A. Ryazantsev TI - On an iterative method for solution of direct problem for nonlinear hyperbolic differential equations JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a1/ LA - en ID - SVMO_2020_22_2_a1 ER -
%0 Journal Article %A I. V. Boykov %A V. A. Ryazantsev %T On an iterative method for solution of direct problem for nonlinear hyperbolic differential equations %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2020 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a1/ %G en %F SVMO_2020_22_2_a1
I. V. Boykov; V. A. Ryazantsev. On an iterative method for solution of direct problem for nonlinear hyperbolic differential equations. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 2. http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a1/
[1] J. L. Lions, Some methods for solution of nonlinear boundary problems, Mir Publ., Moscow, 1972, 588 pp. (In Russ.) | MR
[2] H. Gajewski, K. Grøger, K. Zacharias, Nonlinear operator equations and operator differential equations, Mir Publ., Moscow, 1978, 336 pp. (In Russ.) | MR
[3] P. M. Morse, G. Feshbach, Methods of Theoretical Physics, v. 2, Izdatelstvo inostrannoy literatury Publ., Moscow, 1960, 887 pp. (In Russ.)
[4] N. N. Kalitkin, Numerical methods, Nauka Publ., Moscow, 1972, 512 pp. (In Russ.) | MR
[5] P. N. Vabischevich, Numerical methods of Mathematical Physics. Nonstationary problems, Vuzovskaya kniga Publ., Moscow, 2008, 195 pp. (In Russ.)
[6] A. A. Samarskii, Theory of difference schemes, Nauka Publ., Moscow, 1989, 615 pp. (In Russ.) | MR
[7] A. G. Kulikovskii, N. V. Pogorelov, A. Y. Semenov, Mathematical problems of numerical solution of hyperbolic equations, Fizmatlit Publ., Moscow, 2001, 600 pp. (In Russ.) | MR
[8] R. Courant, E. Isaacson, M. Rees, “On the solution of nonlinear hyperbolic differential equations by finite differences”, Commun. Pure and Appl. Math., 5:3 (1952), 243–255 | DOI | MR | Zbl
[9] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Verification of an entropic regularization method for discontinuous Galerkin schemes applied to hyperbolic equations”, Keldysh Institute Preprints, 2019, no. 18, 25 pp. (In Russ.) | DOI
[10] S. Singh, S. Singh, R. Arora, “Numerical solution of second order one-dimensional hyperbolic equation by exponential B-spline collocation method”, Numerical Analysis and Applications, 10:2 (2017), 164–176 | DOI | MR | Zbl
[11] O. L. Boziev, “Solution of nonlinear hyperbolic equations by an approximate analytical method”, Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 51, 5–14 (In Russ.) | DOI | MR
[12] V. M. Kovenya, D. V. Chirkov, Method of finite differences and finite volumes for solution or mathematical physics problems, Izdatelstvo Novosibirskogo universiteta Publ., Novosibirsk, 2013, 86 pp. (In Russ.)
[13] I. V. Boykov, “On a continuous method for solving nonlinear operator equations”, Differential Equations, 48:9 (2012), 1288–1295 | DOI | MR
[14] A. D. Polyanin, A handbook on nonlinear equations of mathematical physics, Fizmatlit Publ., Moscow, 2001, 576 pp. (In Russ.)
[15] C. Lanczos, Practical methods of applied analysis, Fizmatlit Publ., Moscow, 1961, 524 pp. (In Russ.)
[16] I. V. Boykov, M. V. Kravchenko, V. I. Kryuchko, “The approximate method for reconstructing the potential fields”, Izvestiya. Physics of the Solid Earth, 46:4 (2010), 339–349 | DOI