Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_2_a0, author = {H. S. Alekseeva and A. \`E. Rassadin}, title = {The {Dirichlet} problem for rectangle and new identities for elliptic integrals and functions}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {145--154}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a0/} }
TY - JOUR AU - H. S. Alekseeva AU - A. È. Rassadin TI - The Dirichlet problem for rectangle and new identities for elliptic integrals and functions JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 145 EP - 154 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a0/ LA - ru ID - SVMO_2020_22_2_a0 ER -
%0 Journal Article %A H. S. Alekseeva %A A. È. Rassadin %T The Dirichlet problem for rectangle and new identities for elliptic integrals and functions %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2020 %P 145-154 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a0/ %G ru %F SVMO_2020_22_2_a0
H. S. Alekseeva; A. È. Rassadin. The Dirichlet problem for rectangle and new identities for elliptic integrals and functions. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 2, pp. 145-154. http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a0/
[1] A. N. Tihonov, A. A. Samarskii, Equations of mathematical physics, Nauka Publ., Moscow, 1966, 724 pp. | MR
[2] M. A. Lavrentyev, B. V. Shabat, Methods of the theory of functions of a complex variable, Nauka Publ., Moscow, 1987, 688 pp. | MR
[3] Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, Lectures on the theory of functions of a complex variable, Nauka Publ., Moscow, 1989, 480 pp.
[4] V. M. Babich, M. B. Kapilevich, S. G. Mikhlin, G. I. Natanson, P. M. Riz, L. N. Slobodetskii, M. M. Smirnov, Linear equations of mathematical physics, Nauka Publ., Moscow, 1964, 368 pp. | MR
[5] N. I. Ahiezer, Elements of the theory of elliptic functions, Nauka Publ., Moscow, 1970, 304 pp. | MR
[6] R. Kurant, D. Gilbert, Methods of Mathematical Physics, v. 1, GTTI, Moscow-Leningrad, 1933, 525 pp.
[7] J. M. Borwein, P. B. Borwein, Pi and the AGM. A Study in Analytic Number Theory and Computational Complexity, John Wiley and Sons, Toronto, 1987, 414 pp. (In English) | MR | Zbl