The Dirichlet problem for rectangle and new identities for elliptic integrals and functions
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 2, pp. 145-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, results of comparison of two different methods of exact solution of the Dirichlet problem for rectangle are presented, namely, method of conformal mapping and method of variables’ separation. By means of this procedure normal derivative of Green's function for rectangular domain was expressed via Jacobian elliptic functions. Under approaching to rectangle's boundaries these formulas give new representations of the Dirac delta function. Moreover in the framework of suggested ideology a number of identities for the complete elliptic integral of the first kind were obtained. These formulas may be applied to summation of both numerical and functional series; also they may be useful for analytic number theory.
Keywords: correspondence of boundaries, kernel of integral operator, modulus of complete elliptic integral, the Weierstrass sigma-function, linear differential equation of the second order with variable coefficients.
Mots-clés : the Poisson formula
@article{SVMO_2020_22_2_a0,
     author = {H. S. Alekseeva and A. \`E. Rassadin},
     title = {The {Dirichlet} problem for rectangle and new identities for elliptic integrals and functions},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {145--154},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a0/}
}
TY  - JOUR
AU  - H. S. Alekseeva
AU  - A. È. Rassadin
TI  - The Dirichlet problem for rectangle and new identities for elliptic integrals and functions
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2020
SP  - 145
EP  - 154
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a0/
LA  - ru
ID  - SVMO_2020_22_2_a0
ER  - 
%0 Journal Article
%A H. S. Alekseeva
%A A. È. Rassadin
%T The Dirichlet problem for rectangle and new identities for elliptic integrals and functions
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2020
%P 145-154
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a0/
%G ru
%F SVMO_2020_22_2_a0
H. S. Alekseeva; A. È. Rassadin. The Dirichlet problem for rectangle and new identities for elliptic integrals and functions. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 2, pp. 145-154. http://geodesic.mathdoc.fr/item/SVMO_2020_22_2_a0/

[1] A. N. Tihonov, A. A. Samarskii, Equations of mathematical physics, Nauka Publ., Moscow, 1966, 724 pp. | MR

[2] M. A. Lavrentyev, B. V. Shabat, Methods of the theory of functions of a complex variable, Nauka Publ., Moscow, 1987, 688 pp. | MR

[3] Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, Lectures on the theory of functions of a complex variable, Nauka Publ., Moscow, 1989, 480 pp.

[4] V. M. Babich, M. B. Kapilevich, S. G. Mikhlin, G. I. Natanson, P. M. Riz, L. N. Slobodetskii, M. M. Smirnov, Linear equations of mathematical physics, Nauka Publ., Moscow, 1964, 368 pp. | MR

[5] N. I. Ahiezer, Elements of the theory of elliptic functions, Nauka Publ., Moscow, 1970, 304 pp. | MR

[6] R. Kurant, D. Gilbert, Methods of Mathematical Physics, v. 1, GTTI, Moscow-Leningrad, 1933, 525 pp.

[7] J. M. Borwein, P. B. Borwein, Pi and the AGM. A Study in Analytic Number Theory and Computational Complexity, John Wiley and Sons, Toronto, 1987, 414 pp. (In English) | MR | Zbl