Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_1_a5, author = {K. Zh. Nazarova and B. Kh. Turmetov and K. I. Usmanov}, title = {On a nonlocal boundary value problem with an oblique derivative}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {81--93}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a5/} }
TY - JOUR AU - K. Zh. Nazarova AU - B. Kh. Turmetov AU - K. I. Usmanov TI - On a nonlocal boundary value problem with an oblique derivative JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 81 EP - 93 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a5/ LA - ru ID - SVMO_2020_22_1_a5 ER -
%0 Journal Article %A K. Zh. Nazarova %A B. Kh. Turmetov %A K. I. Usmanov %T On a nonlocal boundary value problem with an oblique derivative %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2020 %P 81-93 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a5/ %G ru %F SVMO_2020_22_1_a5
K. Zh. Nazarova; B. Kh. Turmetov; K. I. Usmanov. On a nonlocal boundary value problem with an oblique derivative. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 1, pp. 81-93. http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a5/
[1] A. V. Bitsadze, A. A. Samarskii, “Some elementary generalizations of linear elliptic boundary value problems”, Doklady AN SSSR, 185:4 (1969), 739–740 (In Russ.) | Zbl
[2] A. B. Bitsadze, “On the homogeneous problem of the inclined derivative of harmonic functions in three-dimensional domains”, Doklady AN SSSR, 148:4 (2003), 749–752 (In Russ.)
[3] Sh. A. Alimov, “On a problem with an oblique derivative”, Differensialnye uravneniya, 17:10 (1981), 1738–1751 (In Russ.) | MR
[4] D. I. Boyarkin, “A boundary value problem with degeneration on the boundary along the manifold of codimension $k>2$”, Zhurnal SVMO, 18:2 (2016), 7–10 (In Russ.) | Zbl
[5] Yu.V. Egorov., V. A. Kondratev, “The oblique derivative problem”, Math. USSR-Sb., 7:1 (1969), 139–169 | DOI | MR | Zbl
[6] V. G. Mazya, “The degenerate problem with oblique derivative”, UMN, 25:2 (152) (1970), 275–276 (In Russ.) | Zbl
[7] P. Popivanov, “Boundary value problems for the biharmonic operator in the unit ball”, AIP Conference Proceedings, 2159:030028 (2019) (In English)
[8] D. Przeworska-Rolewicz, “Some boundary value problems with transformed argument”, Commentationes Mathematicae, 17:2 (1974), 451 – 457 (In English) | MR | Zbl
[9] V. V. Karachik , B. Kh. Turmetov, “On solvability of some nonlocal boundary value problems for polyharmonic equation”, Kazakh Mathematical Journal, 19:1 (2019), 39 – 49 (In English) | MR
[10] B. Kh. Turmetov, M. Muratbekova , A. Ahmedov, “On solvability of some boundary value problems for the non-local polyharmonic equation with boundary operators of the hadamard type”, Journal of Physics: Conference Series, 1366 (2019) (In English) | DOI | MR
[11] V. V. Karachik , A. Sarsenbi, B. Kh. Turmetov, “On solvability of the main boundary value problems for a non-local Poisson equation”, Turkish Journal of Mathematics, 43:3 (2019), 1604 – 1625 (In English) | DOI | MR | Zbl
[12] B. Kh. Turmetov, R. N. Shamsiev, “On a boundary problem for a nonlocal Poisson equation with boundary operators of the Hadamard type”, AIP Conference Proceedings, 2183:070027 (2019)
[13] D. Gilbarg , N. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1977, 401 pp. (In English) | MR | Zbl