On a nonlocal boundary value problem with an oblique derivative
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 1, pp. 81-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work studies the solvability of a nonlocal boundary value problem for the Laplace equation. The nonlocal condition is introduced using transformations in the $R^{n}$ space carried out by some orthogonal matrices. Examples and properties of such matrices are given. To study the main problem, an auxiliary nonlocal Dirichlet-type problem for the Laplace equation is first solved. This problem is reduced to a vector equation whose elements are the solutions of the classical Dirichlet probem. Under certain conditions for the boundary condition coefficients, theorems on uniqueness and existence of a solution to a problem of Dirichlet type are proved. For this solution an integral representation is also obtained, which is a generalization of the classical Poisson integral. Further, the main problem is reduced to solving a non-local Dirichlet-type problem. Theorems on existence and uniqueness of a solution to the problem under consideration are proved. Using well-known statements about solutions of a boundary value problem with an oblique derivative for the classical Laplace equation, exact orders of smoothness of a problem's solution are found. Examples are also given of the cases where the theorem conditions are not fulfilled. In these cases the solution is not unique.
Mots-clés : oblique derivative, Laplace equation, orthogonal matrix, existence of solution
Keywords: nonlocal problem, Helder class, smoothness of solution, uniqueness of solution.
@article{SVMO_2020_22_1_a5,
     author = {K. Zh. Nazarova and B. Kh. Turmetov and K. I. Usmanov},
     title = {On a nonlocal boundary value problem with an oblique derivative},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {81--93},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a5/}
}
TY  - JOUR
AU  - K. Zh. Nazarova
AU  - B. Kh. Turmetov
AU  - K. I. Usmanov
TI  - On a nonlocal boundary value problem with an oblique derivative
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2020
SP  - 81
EP  - 93
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a5/
LA  - ru
ID  - SVMO_2020_22_1_a5
ER  - 
%0 Journal Article
%A K. Zh. Nazarova
%A B. Kh. Turmetov
%A K. I. Usmanov
%T On a nonlocal boundary value problem with an oblique derivative
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2020
%P 81-93
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a5/
%G ru
%F SVMO_2020_22_1_a5
K. Zh. Nazarova; B. Kh. Turmetov; K. I. Usmanov. On a nonlocal boundary value problem with an oblique derivative. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 1, pp. 81-93. http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a5/

[1] A. V. Bitsadze, A. A. Samarskii, “Some elementary generalizations of linear elliptic boundary value problems”, Doklady AN SSSR, 185:4 (1969), 739–740 (In Russ.) | Zbl

[2] A. B. Bitsadze, “On the homogeneous problem of the inclined derivative of harmonic functions in three-dimensional domains”, Doklady AN SSSR, 148:4 (2003), 749–752 (In Russ.)

[3] Sh. A. Alimov, “On a problem with an oblique derivative”, Differensialnye uravneniya, 17:10 (1981), 1738–1751 (In Russ.) | MR

[4] D. I. Boyarkin, “A boundary value problem with degeneration on the boundary along the manifold of codimension $k>2$”, Zhurnal SVMO, 18:2 (2016), 7–10 (In Russ.) | Zbl

[5] Yu.V. Egorov., V. A. Kondratev, “The oblique derivative problem”, Math. USSR-Sb., 7:1 (1969), 139–169 | DOI | MR | Zbl

[6] V. G. Mazya, “The degenerate problem with oblique derivative”, UMN, 25:2 (152) (1970), 275–276 (In Russ.) | Zbl

[7] P. Popivanov, “Boundary value problems for the biharmonic operator in the unit ball”, AIP Conference Proceedings, 2159:030028 (2019) (In English)

[8] D. Przeworska-Rolewicz, “Some boundary value problems with transformed argument”, Commentationes Mathematicae, 17:2 (1974), 451 – 457 (In English) | MR | Zbl

[9] V. V. Karachik , B. Kh. Turmetov, “On solvability of some nonlocal boundary value problems for polyharmonic equation”, Kazakh Mathematical Journal, 19:1 (2019), 39 – 49 (In English) | MR

[10] B. Kh. Turmetov, M. Muratbekova , A. Ahmedov, “On solvability of some boundary value problems for the non-local polyharmonic equation with boundary operators of the hadamard type”, Journal of Physics: Conference Series, 1366 (2019) (In English) | DOI | MR

[11] V. V. Karachik , A. Sarsenbi, B. Kh. Turmetov, “On solvability of the main boundary value problems for a non-local Poisson equation”, Turkish Journal of Mathematics, 43:3 (2019), 1604 – 1625 (In English) | DOI | MR | Zbl

[12] B. Kh. Turmetov, R. N. Shamsiev, “On a boundary problem for a nonlocal Poisson equation with boundary operators of the Hadamard type”, AIP Conference Proceedings, 2183:070027 (2019)

[13] D. Gilbarg , N. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1977, 401 pp. (In English) | MR | Zbl