Combinatorial invariant of Morse-Smale diffeomorphisms on surfaces with orientable heteroclinic
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 1, pp. 71-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider class of orientation-preserving Morse-Smale diffeomorphisms $f$, given on orientable surface $M^{2}$. In their articles A.A. Bezdenezhnich and V.Z. Grines has shown, that such diffeomorfisms contain finite number of heteroclinic orbits. Moreover, the problem of classification for such diffeomorphisms is reduced to the problem of distinguishing orientable graphs with substitutions describing the geometry of heteroclinic intersections. Howewer, these graphs generally do not allow polynomial distinguishing algorithms. In this paper, we propose a new approach to the classification of such cascades. To this end, each considered diffeomorphism $f$ is associated with a graph whose embeddablility in the ambient surface makes it possible to construct an effective algoritm for distinguishing such graphs.
Keywords: Morse-Smale diffeomorphism, orientation-preserving diffeomorphism, topological invariant of diffeomorphism, surface diffeomorphism, orientable heteroclinic.
@article{SVMO_2020_22_1_a4,
     author = {A. I. Morozov and O. V. Pochinka},
     title = {Combinatorial invariant of {Morse-Smale} diffeomorphisms on surfaces with orientable heteroclinic},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {71--80},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a4/}
}
TY  - JOUR
AU  - A. I. Morozov
AU  - O. V. Pochinka
TI  - Combinatorial invariant of Morse-Smale diffeomorphisms on surfaces with orientable heteroclinic
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2020
SP  - 71
EP  - 80
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a4/
LA  - ru
ID  - SVMO_2020_22_1_a4
ER  - 
%0 Journal Article
%A A. I. Morozov
%A O. V. Pochinka
%T Combinatorial invariant of Morse-Smale diffeomorphisms on surfaces with orientable heteroclinic
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2020
%P 71-80
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a4/
%G ru
%F SVMO_2020_22_1_a4
A. I. Morozov; O. V. Pochinka. Combinatorial invariant of Morse-Smale diffeomorphisms on surfaces with orientable heteroclinic. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 1, pp. 71-80. http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a4/

[1] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 6:73 (1967), 747–817 (In English) | DOI | MR | Zbl

[2] V. Grines, “Topological classification of Morse-??Smale diffeomorphisms with finite set of heteroclinic trajectories on surfaces”, Math. Notes, 54:3 (1993), 881-889 (In English) | DOI | MR | Zbl

[3] A.N. Bezdenezhnich, Topological classification of Morse-Smale diffeomorphisms with orientable heteroclinical sets on 2-manifolds : Dissertation., Lobachevsky University., Gorkiy, 1985, 124 pp. | Zbl

[4] Pochinka O., Morozov A., “Morse-Smale surfaced diffeomorphisms with orientable heteroclinic.”, Journal of Dynamical and Control Systems,, 2020 (In English)

[5] V. Grines, V. Medvedev, O. Pochinka, E. Zhuzhoma, “Global attractor and repeller of Morse-Smale diffeomorphisms”, Proceedings of the Steklov Institute of Mathematics, 271:1 (2010), 103–124 (In Russ.) | MR | Zbl

[6] V. Grines, O. Pochinka,S. Van Strien, “On 2-diffeomorphisms with one-dimensional basic sets and a finite number of moduli”, Moscow Mathematical Journal, 16:4 (2016), 727–749 (In English) | DOI | MR | Zbl

[7] V. Grines, T. Medvedev, O. Pochinka, Dynamical Systems on 2- and 3-Manifolds., Springer, Switzerland, 2016, 295 pp. (In English) | MR | Zbl

[8] D. Rolfsen, Knots and links. Mathematics Lecture Series 7, University of British Columbia, Vancouver, 1990 (In English) | MR

[9] M.W. Hirsch, Differential topology, Springer, Switzerland, 1976 (In English) | MR | Zbl