Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_1_a3, author = {S. I. Mitrokhin}, title = {Asymptotics of the spectrum of even-order differential operators with discontinuos weight functions}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {48--70}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a3/} }
TY - JOUR AU - S. I. Mitrokhin TI - Asymptotics of the spectrum of even-order differential operators with discontinuos weight functions JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 48 EP - 70 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a3/ LA - ru ID - SVMO_2020_22_1_a3 ER -
%0 Journal Article %A S. I. Mitrokhin %T Asymptotics of the spectrum of even-order differential operators with discontinuos weight functions %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2020 %P 48-70 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a3/ %G ru %F SVMO_2020_22_1_a3
S. I. Mitrokhin. Asymptotics of the spectrum of even-order differential operators with discontinuos weight functions. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 1, pp. 48-70. http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a3/
[1] V. B. Lidsky, V. A. Sadovnichyi, “Asymptotic formulas for the roots of a class of entire functions”, Mathematical Collection, 65:4 (1968), 558–566 (In Russ.)
[2] V. A. Sadovnichyi, “On the traces of ordinary differential operators of higher orders”, Mathematical Collection, 72:2 (1967), 293–310 (In Russ.)
[3] A. S. Pechentsov, “Boundary value problems for differential equations containing a parameter with multiple roots of the characteristic equation”, Differential Equations, 20:2 (1984), 263–273 (In Russ.) | MR | Zbl
[4] V. A. Chernyatin, “Higher-order asymptotics of the spectrum of the Sturm—Liouville operator”, Differential Equations, 38:2 (2002), 206–215 (In Russ.) | MR | Zbl
[5] H. P. W. Gottlieb, “Iso-spectral Operators: Some Model Examples with Discontinuous Coefficients”, Journal of Math. Anal. and Appl., 132 (1988), 123–137 (In English) | DOI | MR | Zbl
[6] V. A. Ilyin, “On the convergence of eigenfunction expansions at the points of discontinuity of coefficients of the differential operator”, Mathematical Notes, 22:5 (1977), 698–723 (In Russ.)
[7] S. I. Mitrokhin, “About the formulas of regularized traces of differential operators of second order with discontinuous coefficients”, Vestnik MGU. Ser.: “Mathematics, mechanics”, 6 (1986), 3–6 (In Russ.)
[8] V. D. Budaev, “On unconditional basis property on a closed interval of systems of eigenfunctions and associated functions of a second-order operator with discontinuous coefficients”, Differential equations, 23:6 (1987), 941–952 (In Russ.) | MR
[9] V. A. Ilyin, “Necessary and sufficient conditions for the Riesz basis property of root vectors of discontinuous operators of second order”, Differential Equations, 22:12 (1980), 2059–2071 (In Russ.)
[10] V. A. Vinokurov, V. A. Sadovnichy, “Asymptotics of any order of eigenvalues and eigenfunctions of the Sturm—Liouville boundary value problem on an interval with summable potential”, Bulletin of the Russian Academy of Sciences. Mathematical series, 64:4 (2000), 47–108 (In Russ.) | DOI | MR | Zbl
[11] S. I. Mitrokhin, “On spectral properties of a fourth-order differential operator with summable coefficients”, Trudy MIAN, 270 (2010), 188–197 (In Russ.) | MR | Zbl
[12] S. I. Mitrokhin, “On spectral properties of odd-order differential operators with summable potential”, Differential Equations, 47:12 (2011), 1808–1811 (In Russ.) | MR | Zbl
[13] A. M. Savchuk, A. A. Shkalikov, “Sturm—Liouville operators with singular potentials”, Mathematical Notes, 66:6 (1999), 897–912 (In Russ.) | DOI | Zbl
[14] S. I. Mitrokhin, “Multipoint differential operators: “splitting” of eigenvalues, which are mainly in the main”, Izvestia Saratovskogo Universiteta. Novaya seriya., 17:1 (2017), 5–18 (In Russ.) | MR | Zbl
[15] A. P. Gurevich, A. P. Khromov, “Differentiation operators of first and second orders with alternating weight function”, Mathematical Notes, 56:1 (1994), 3–15 (In Russ.) | MR | Zbl
[16] S. I. Mitrokhin, “On some spectral properties of second-order differential operators with a discontinuous weight function”, Reports of the Russian Academy of Sciences, 356:1 (1997), 13–15 (In Russ.) | MR | Zbl
[17] S. I. Mitrokhin, “Asymptotics of the eigenvalues of a differential operator with an alternating weight function”, News of Universities. Mathematics, 6 (2018), 31–47 (In Russ.) | MR | Zbl
[18] S. I. Mitrokhin, “On the asymptotics of the eigenvalues of the differential operator of fourth order with alternating weighting function”, Vestnik MGU. Ser. «Mathematics, Mechanics», 6 (2018), 46–58 | MR | Zbl
[19] V. A. Yurko, “Spectral analysis of higher-order differential operators with discontinuity conditions at an internal point”, Contemporary Mathematics. Fundamental Directions, 63:2 (2017), 362–372 (In Russ.) | MR
[20] G. A. Aigunov, M. M. Gekhtman, “On the question of the maximum possible growth rate of the system of eigenfunctions of the Sturm—Liouville operator with a continuous weight function on a finite interval”, Uspekhi Mathematiki, 52:3(315) (1997), 161–162 (In Russ.) | DOI | MR | Zbl
[21] V. A. Yurko, “On the inverse problem for quasiperiodic differential beams with discontinuity conditions within an the interval”, Mathematical Notes, 98:3 (2015), 476–480 (In Russ.) | DOI | MR | Zbl
[22] M. M. Gekhtman, Yu. M. Zagirov, “[On the maximum possible growth rate of orthonormal eigenfunctions of the Sturm-Liouville operator with continuous positive weight function]”, Uspekhi matematiki, 47:3(285) (1992), 157–158 (In Russ.) | MR
[23] G. A. Aigunov, “On the boundedness of orthonormal eigenfunctions of a nonlinear boundary value problem of the Sturm—Liouville type with a weight function unbounded above on a finite interval”, Uspekhi matematiki, 57:1(343) (2002), 145–146 (In Russ.) | DOI | MR | Zbl
[24] V. A. Yurko, “On inverse nodal and spectral problems for boundary value problems with discontinuity conditions within an interval”, Izvestiya Saratovskogo universiteta. Novaya seria, 8:1 (2008), 31–35 (In Russ.)
[25] S. I. Mitrokhin, Spectral theory of operators: smooth, discontinuous, summable coefficients, INTUIT Publ., Moscow, 2009, 364 pp. (In Russ.)
[26] M. A. Naimark, Linear differential operators, Nauka Publ., Moscow, 1969, 528 pp. (In Russ.)
[27] R. Bellman, K. L. Cook, Differential-difference equations, Mir Publ., Moscow, 1967, 548 pp. (In Russ.)
[28] V. A. Sadovnichy, V. A. Lyubishkin, Yu. Belabassi, “On regularized sums of roots of an entire function of one class”, Reports of the USSR Academy of Sciences, 254:6 (1980), 1346–1348 (In Russ.) | MR