On the disposition of cubic and pair of conics in a real projective plane
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 1, pp. 24-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first part of the 16th Hilbert problem the question about the topology of nonsingular projective algebraic curves and surfaces was formulated. The problem on topology of algebraic manifolds with singularities belong to this subject too. The particular case of this problem is the study of curves that are decompozable into the product of curves in a general position. This paper deals with the problem of topological classification of mutual positions of a nonsingular curve of degree three and two nonsingular curves of degree two in the real projective plane. Additiolal conditions for this problem include general position of the curves and its maximality; in particular, the number of common points for each pair of curves-factors reaches its maximum. It is proved that the classification contains no more than six specific types of positions of the species under study. Four position types are built, and the question of realizability of the two remaining ones is open.
Keywords: nonsingular plane real algebraic curves, the 16th Hilbert problem, curves with singularities, decompozable curves, topological classification.
@article{SVMO_2020_22_1_a1,
     author = {V. A. Gorskaya and G. M. Polotovsky},
     title = {On the disposition of cubic and pair of conics in a real projective plane},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {24--37},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a1/}
}
TY  - JOUR
AU  - V. A. Gorskaya
AU  - G. M. Polotovsky
TI  - On the disposition of cubic and pair of conics in a real projective plane
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2020
SP  - 24
EP  - 37
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a1/
LA  - ru
ID  - SVMO_2020_22_1_a1
ER  - 
%0 Journal Article
%A V. A. Gorskaya
%A G. M. Polotovsky
%T On the disposition of cubic and pair of conics in a real projective plane
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2020
%P 24-37
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a1/
%G ru
%F SVMO_2020_22_1_a1
V. A. Gorskaya; G. M. Polotovsky. On the disposition of cubic and pair of conics in a real projective plane. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 1, pp. 24-37. http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a1/

[1] D. A. Gudkov, G. A. Utkin, “Topology of 6-th degree curves and 4-th degree surfaces (to the Hilbert 16th problem)”, Uchenye zapiski Gorkovskogo universiteta, 87 (1969), 1–214 (In Russ.)

[2] “A catalogue of $M$-decomposing curves of sixth order”, Dokl. Akad. Nauk SSSR, 236:3 (1977), 548–551 (In Russ.) | MR | Zbl

[3] I. M. Borisov, G. M. Polotovskiy, “On the topology of plane real decomposable curves of degree 8”, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2019 (In Russ.)

[4] T. V. Kuzmenko, G. M Polotovskiĭ, “Classification of curves of degree 6 decomposing into a product of $M$-curves in general position”, AMS Translations, Ser. 2, 173 (1996), 165–177 | MR | Zbl

[5] A. B. Korchagin, G. M. Polotovskii, “On arrangements of a plane real quintic curve with respect to a pair of lines”, Commun. Contemp. Math., 5:1 (2003), 1–24 | DOI | MR | Zbl

[6] S. Yu. Orevkov, “Arrangements of an $M$-quintic with respect to a conic that maximally intersects its odd branch”, Algebra i Analiz, 19:4 (2007), 174–242 (In Russ.)

[7] A. B. Korchagin, G. M. Polotovskiy, “On positions of a real plane quintic relative to a couple of lines”, Algebra i Analiz, 21:2 (2009), 92–112 (In Russ.) | MR

[8] D. A. Gudkov, “The topology of real projective algebraic varieties”, Uspekhi Mat. Nauk, 29:4(178) (1974), 3–79 (In Russ.) | MR | Zbl

[9] S. Yu. Orevkov, “Link theory and oval arrangements of real algebraic curve”, Topology, 38 (1999), 779–810 | DOI | MR | Zbl

[10] S. Yu. Orevkov, G. M. Polotovskiy, “Projective $M$-cubics and $M$-quartics in general position with a maximally intersecting pair of ovals”, Algebra i Analiz, 11:5 (1999), 166–184

[11] Rudolf Lee, “Algebraic functions and closed braids”, Topology, 22 (1983), 191–202 | DOI | MR

[12] S. Yu. Orevkov, “Clasification flexible $M$-curves of degree 8 up to isotopy”, GAFA, Geom. funct. anal., 12:4 (2002), 723–755 | DOI | MR | Zbl