Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2020_22_1_a0, author = {M. M. Babayev}, title = {On the solvability of a mixed problem for a fractional partial differential equation with delayed time argument and {Laplace} operators with nonlocal boundary conditions in {Sobolev} classes}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {13--23}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a0/} }
TY - JOUR AU - M. M. Babayev TI - On the solvability of a mixed problem for a fractional partial differential equation with delayed time argument and Laplace operators with nonlocal boundary conditions in Sobolev classes JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2020 SP - 13 EP - 23 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a0/ LA - ru ID - SVMO_2020_22_1_a0 ER -
%0 Journal Article %A M. M. Babayev %T On the solvability of a mixed problem for a fractional partial differential equation with delayed time argument and Laplace operators with nonlocal boundary conditions in Sobolev classes %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2020 %P 13-23 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a0/ %G ru %F SVMO_2020_22_1_a0
M. M. Babayev. On the solvability of a mixed problem for a fractional partial differential equation with delayed time argument and Laplace operators with nonlocal boundary conditions in Sobolev classes. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 22 (2020) no. 1, pp. 13-23. http://geodesic.mathdoc.fr/item/SVMO_2020_22_1_a0/
[1] A. N. Tikhonov, A. A. Samarskiy, Equations of Mathematical Physics, 3th ed., Nauka Publ., Moscow, 1977, 736 pp. (In Russ.) | MR
[2] L. Raleigh, Sound Theory, v. 1, 1955, 504 pp.
[3] S.P. Tymoshenko, D.H. Yang, U. Weaver, Fluctuations in engineering, Mashinostroenie Publ., Moscow, 1985, 472 pp. (In Russ.)
[4] L. E. Elsholz, S. B. Norkin, “Introduction to the theory of differential equations with a deviating argument”, Nauka Publ., M., 1971, 296 pp. (In Russ.) | MR
[5] M. A. Nimark, Linear differential operators, Nauka, Moscow, 1969, 528 pp. (In Russ.)
[6] A. V. Pskhu, Equations in private derivatives fractional order, Nauka, Moscow, 2005, 200 pp. (In Russ.)
[7] Igor Podlubny, “Fractional Differential Equations”, Mathematics in science and engineering, 198 (1999), 340 (In Eng.) | MR | Zbl
[8] Sh. G. Kasimov, Sh. K. Ataev, “On solvability of the mixed problem for a partial equation of a fractional order with Laplace operators and nonlocal boundary conditions in the Sobolev classes”, Uzbek mathematical journal, 1 (2018), 73–89 (In Eng.) | DOI | MR