Dynamics of viscoelastic element of flow channel
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 4, pp. 488-506.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the plane problem of aerohydroelasticity on small oscillations arising during bilateral flow around a viscoelastic element located on the rectilinear wall of an infinite channel. A mathematical model describing the problem in a linear formulation and corresponding to small perturbations of homogeneous subsonic flows and small deflections of a viscoelastic element is formulated. Using the methods of the theory of functions of a complex variable, the solution of the problem is reduced to the study of the integro-differential equation with partial derivatives with respect to the deflection function of the element. To solve this equation, a numerical method based on the application of the Bubnov-Galerkin method is proposed, followed by the reduction of the resulting system of integro-differential equations to the Volterra vector equation of the second kind. On the basis of the developed numerical method the computer simulation of the dynamics of the deformable element is carried out.
Keywords: Aerohydrodynamic impacts, viscoelastic element, aerohydroelasticity, integro-differential equation, Bubnov-Galerkin method, Volterra vector equation of the second kind, theory of complex variable function.
@article{SVMO_2019_21_4_a7,
     author = {N. I. Eremeeva and P. A. Vel'misov},
     title = {Dynamics of viscoelastic element of flow channel},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {488--506},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a7/}
}
TY  - JOUR
AU  - N. I. Eremeeva
AU  - P. A. Vel'misov
TI  - Dynamics of viscoelastic element of flow channel
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2019
SP  - 488
EP  - 506
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a7/
LA  - ru
ID  - SVMO_2019_21_4_a7
ER  - 
%0 Journal Article
%A N. I. Eremeeva
%A P. A. Vel'misov
%T Dynamics of viscoelastic element of flow channel
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2019
%P 488-506
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a7/
%G ru
%F SVMO_2019_21_4_a7
N. I. Eremeeva; P. A. Vel'misov. Dynamics of viscoelastic element of flow channel. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 4, pp. 488-506. http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a7/

[1] R. V. Ageev, L. I. Mogilevich, V. S. Popov, A. A. Popova, “Movement of viscous fluid in a flat channel formed by a vibrating die and a hinged plate”, Trudy MAI, 2014, no. 78, 1–13 (In Russ.)

[2] L. I. Mogilevich, V. S. Popov, A. A. Popova, A. V. Xristoforova, “Mathematical modeling of the dynamics of interaction of a highly viscous fluid with the walls of a channel mounted on an elastic base”, Dinamika sistem, mexanizmov i mashin, 3:1 (2016), 350–354 (In Russ.)

[3] E. Askari, K. H. Jeong, M. Amabili, “Hydroelastic vibration of circular plates immersed in a liquid-filled container with free surface”, Journal of Sound and Vibration, 332:12 (2013), 3064–3085 | DOI

[4] R. T. Fall, D. Derakhshan, “Flow-induced vibration of pipeline on elastic support”, Procedia Engineering, 14:1 (2011), 2986–2993 | DOI | MR

[5] G. N. Gatica, N. Heuer, S. Meddahi, “Coupling of mixed finite element and stabilized boundary element methods for a fluid-solid interaction problem in 3D”, Numer. Methods Partial Differ. Equations, 30:4 (2014), 1211–1233 | DOI | MR | Zbl

[6] K. Kontzialis, K. Moditis, M. P. Paidoussis, “Transient simulations of the fluid-structure interaction response of a partially confined pipe under axial flows in opposite directions”, Journal of Pressure Vessel Technology, Transactions of the ASME, 139:3 (2017), 1–8 | DOI | MR

[7] K. Moditis, M. Paidoussis, J. Ratigan, “Dynamics of a partially confined, discharging, cantilever pipe with reverse external flow”, Journal of Fluids and Structures, 63 (2016), 120–139 | DOI

[8] P. A. Velmisov, A. V. Ankilov, “Dynamic stability of deformable structural elements under supersonic flow regime”, Vestnik Samarskogo gosudarstvennogo texnicheskogo universiteta. Seriya: fiziko-matematicheskie nauki, 22:1 (2018), 96–115 | DOI | Zbl

[9] A. V. Ankilov, P. A. Velmisov, Dynamics and stability of elastic plates under Aerohydrodynamic influence, Ulyanovsk State Technical University, Ulyanovsk, 2009, 220 pp. (In Russ.)

[10] A. V. Ankilov, P. A. Velmisov, Mathematical modeling in problems of dynamic stability of deformable structural elements under Aerohydrodynamic influence, Ulyanovsk State Technical University, Ulyanovsk, 2013, 322 pp. (In Russ)

[11] P. A. Velmisov, Yu. A. Reshetnikov, Stability of viscoelastic plates under Aerohydrodynamic influence, Saratov State University, Saratov, 1994, 176 pp. (In Russ.)

[12] M. A. Lavrent`ev, B. V. Shabat, Methods of the theory of functions of a complex variable, Nauka Publ., Moscow, 1987, 688 pp. (In Russ.) | MR

[13] K. Fletcher, Numerical methods based on the Galerkin method, Mir Publ., Moscow, 1988, 143 pp. (In Russ.)

[14] N. I. Eremeeva, P. A. Velmisov, “Numerical method for solving of a problem about oscillations of viscoelastic plates in subsonic stream of gas”, Applications of Mathematics in Engineering and Economics, 2002, 344–355 | MR | Zbl

[15] N. I. Eremeeva, P. A. Velmisov, “Numerical solution of a problem about oscillations of viscoelastic plates under aerohydrodynamical action”, Bulletin Scientific University din Pitesti, Romai - Mathematics and Informatics Seria, 9 (2003), 349–358

[16] N. K. Kalitkin, Numerical methods, Nauka Publ., Moscow, 1978, 512 pp. (In Russ.)

[17] P. A. Velmisov, A. V. Ankilov, E. P. Semenova, “Dynamic stability of nonlinear aeroelastic systems”, Avtomatizaciya processov upravleniya, 4(50) (2017), 48–58 (In Russ.)

[18] P. A. Velmisov, A. V. Ankilov, “On the dynamic stability of a nonlinear aeroelastic system”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, 23 (2018), 3–19 (In Russ.) | MR | Zbl

[19] A. V. Ankilov, P. A. Velmisov, “Stability of solutions to an aerohydroelasticity problem”, Journal of Mathematical Sciences, 219:1 (2016), 14–26 | DOI | MR | Zbl

[20] A. V. Ankilov, P. A. Velmisov, “Mathematical modelling of dynamics and stability of elastic elements of vibration devices”, IFAC-PapersOnLine, 48:11, Proceeding of 1st IFAC Conference on Modelling, Identification and Control of Nonlinear Systems (2015), 970–975