Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_4_a7, author = {N. I. Eremeeva and P. A. Vel'misov}, title = {Dynamics of viscoelastic element of flow channel}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {488--506}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a7/} }
TY - JOUR AU - N. I. Eremeeva AU - P. A. Vel'misov TI - Dynamics of viscoelastic element of flow channel JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 488 EP - 506 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a7/ LA - ru ID - SVMO_2019_21_4_a7 ER -
N. I. Eremeeva; P. A. Vel'misov. Dynamics of viscoelastic element of flow channel. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 4, pp. 488-506. http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a7/
[1] R. V. Ageev, L. I. Mogilevich, V. S. Popov, A. A. Popova, “Movement of viscous fluid in a flat channel formed by a vibrating die and a hinged plate”, Trudy MAI, 2014, no. 78, 1–13 (In Russ.)
[2] L. I. Mogilevich, V. S. Popov, A. A. Popova, A. V. Xristoforova, “Mathematical modeling of the dynamics of interaction of a highly viscous fluid with the walls of a channel mounted on an elastic base”, Dinamika sistem, mexanizmov i mashin, 3:1 (2016), 350–354 (In Russ.)
[3] E. Askari, K. H. Jeong, M. Amabili, “Hydroelastic vibration of circular plates immersed in a liquid-filled container with free surface”, Journal of Sound and Vibration, 332:12 (2013), 3064–3085 | DOI
[4] R. T. Fall, D. Derakhshan, “Flow-induced vibration of pipeline on elastic support”, Procedia Engineering, 14:1 (2011), 2986–2993 | DOI | MR
[5] G. N. Gatica, N. Heuer, S. Meddahi, “Coupling of mixed finite element and stabilized boundary element methods for a fluid-solid interaction problem in 3D”, Numer. Methods Partial Differ. Equations, 30:4 (2014), 1211–1233 | DOI | MR | Zbl
[6] K. Kontzialis, K. Moditis, M. P. Paidoussis, “Transient simulations of the fluid-structure interaction response of a partially confined pipe under axial flows in opposite directions”, Journal of Pressure Vessel Technology, Transactions of the ASME, 139:3 (2017), 1–8 | DOI | MR
[7] K. Moditis, M. Paidoussis, J. Ratigan, “Dynamics of a partially confined, discharging, cantilever pipe with reverse external flow”, Journal of Fluids and Structures, 63 (2016), 120–139 | DOI
[8] P. A. Velmisov, A. V. Ankilov, “Dynamic stability of deformable structural elements under supersonic flow regime”, Vestnik Samarskogo gosudarstvennogo texnicheskogo universiteta. Seriya: fiziko-matematicheskie nauki, 22:1 (2018), 96–115 | DOI | Zbl
[9] A. V. Ankilov, P. A. Velmisov, Dynamics and stability of elastic plates under Aerohydrodynamic influence, Ulyanovsk State Technical University, Ulyanovsk, 2009, 220 pp. (In Russ.)
[10] A. V. Ankilov, P. A. Velmisov, Mathematical modeling in problems of dynamic stability of deformable structural elements under Aerohydrodynamic influence, Ulyanovsk State Technical University, Ulyanovsk, 2013, 322 pp. (In Russ)
[11] P. A. Velmisov, Yu. A. Reshetnikov, Stability of viscoelastic plates under Aerohydrodynamic influence, Saratov State University, Saratov, 1994, 176 pp. (In Russ.)
[12] M. A. Lavrent`ev, B. V. Shabat, Methods of the theory of functions of a complex variable, Nauka Publ., Moscow, 1987, 688 pp. (In Russ.) | MR
[13] K. Fletcher, Numerical methods based on the Galerkin method, Mir Publ., Moscow, 1988, 143 pp. (In Russ.)
[14] N. I. Eremeeva, P. A. Velmisov, “Numerical method for solving of a problem about oscillations of viscoelastic plates in subsonic stream of gas”, Applications of Mathematics in Engineering and Economics, 2002, 344–355 | MR | Zbl
[15] N. I. Eremeeva, P. A. Velmisov, “Numerical solution of a problem about oscillations of viscoelastic plates under aerohydrodynamical action”, Bulletin Scientific University din Pitesti, Romai - Mathematics and Informatics Seria, 9 (2003), 349–358
[16] N. K. Kalitkin, Numerical methods, Nauka Publ., Moscow, 1978, 512 pp. (In Russ.)
[17] P. A. Velmisov, A. V. Ankilov, E. P. Semenova, “Dynamic stability of nonlinear aeroelastic systems”, Avtomatizaciya processov upravleniya, 4(50) (2017), 48–58 (In Russ.)
[18] P. A. Velmisov, A. V. Ankilov, “On the dynamic stability of a nonlinear aeroelastic system”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, 23 (2018), 3–19 (In Russ.) | MR | Zbl
[19] A. V. Ankilov, P. A. Velmisov, “Stability of solutions to an aerohydroelasticity problem”, Journal of Mathematical Sciences, 219:1 (2016), 14–26 | DOI | MR | Zbl
[20] A. V. Ankilov, P. A. Velmisov, “Mathematical modelling of dynamics and stability of elastic elements of vibration devices”, IFAC-PapersOnLine, 48:11, Proceeding of 1st IFAC Conference on Modelling, Identification and Control of Nonlinear Systems (2015), 970–975