Keywords: periodic points, semiconjugacy.
@article{SVMO_2019_21_4_a6,
author = {E. D. Kurenkov and D. I. Mints},
title = {On periodic points of torus endomorphisms},
journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
pages = {480--487},
year = {2019},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a6/}
}
E. D. Kurenkov; D. I. Mints. On periodic points of torus endomorphisms. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 4, pp. 480-487. http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a6/
[1] J. Franks, “Anosov diffeomorphisms on tori”, Proc. Symp. in Pure Math., 14, 1970, 61–93 | DOI | MR | Zbl
[2] S. Newhouse, “On codimension one Anosov diffeomorphisms”, Am. J. Math., 92:3 (1970), 761–770 | DOI | MR | Zbl
[3] A. Manning, “There are no new Anosov diffeomorphisms on tori”, American Journal of Mathematics, 96:3 (1974), 422–429 | DOI | MR | Zbl
[4] F. Przytycki, “Anosov endomorphisms”, Stud. Math., 58:3 (1976), 249–285 | DOI | MR | Zbl
[5] R. Mane, C. Pugh, “Stability of endomorphisms”, Lecture Notes in Math., 468, 1975, 175–184 | DOI | MR | Zbl
[6] M. Zhang, “On the topologically conjugate classes of Anosov endomorphisms on tori”, Chin Ann Math Ser B, 10 (1989), 416–425 | MR | Zbl
[7] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Cambridge University Press, 1995, 824 pp. | MR | Zbl
[8] E. B. Vinberg, Course of algebra, MCNMO, Moscow, 2011, 592 pp. (In Russ)