Energy function for $\Omega$-stable flows without limit cycles on surfaces
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 4, pp. 460-468.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of the class of $\Omega$-stable flows without limit cycles on surfaces, i.e. flows on surfaces with non-wandering set consisting of a finite number of hyperbolic fixed points. This class is a generalization of the class of gradient-like flows, differing by forbiddance of saddle points connected by separatrices. The results of the work are the proof of the existence of a Morse energy function for any flow from the considered class and the construction of such a function for an arbitrary flow of the class. Since the results are a generalization of the corresponding results of K. Meyer for Morse-Smale flows and, in particular, for gradient-like flows, the methods for constructing the energy function for the case of this article are a further development of the methods used by K. Meyer, taking in sense the specifics of $\Omega$-stable flows having a more complex structure than gradient-like flows due to the presence of the so-called “chains” of saddle points connected by their separatrices.
Keywords: energy function, $\Omega$-stable flow, Morse function, a flow without limit cycles, a flow on a surface.
@article{SVMO_2019_21_4_a4,
     author = {A. E. Kolobyanina and V. E. Kruglov},
     title = {Energy function for $\Omega$-stable flows without limit cycles on surfaces},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {460--468},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a4/}
}
TY  - JOUR
AU  - A. E. Kolobyanina
AU  - V. E. Kruglov
TI  - Energy function for $\Omega$-stable flows without limit cycles on surfaces
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2019
SP  - 460
EP  - 468
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a4/
LA  - ru
ID  - SVMO_2019_21_4_a4
ER  - 
%0 Journal Article
%A A. E. Kolobyanina
%A V. E. Kruglov
%T Energy function for $\Omega$-stable flows without limit cycles on surfaces
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2019
%P 460-468
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a4/
%G ru
%F SVMO_2019_21_4_a4
A. E. Kolobyanina; V. E. Kruglov. Energy function for $\Omega$-stable flows without limit cycles on surfaces. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 4, pp. 460-468. http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a4/

[1] A. A. Andronov, L. S. Pontryagin, “Rough systems”, Doklady Akademii nauk SSSR, 14:5 (1937), 247–250 (In Russ.)

[2] S. Smale, “On gradient dynamical systems”, Annals of Mathematics, 74 (1961), 199–206 | DOI | MR | Zbl

[3] K. R. Meyer, “Energy function for Morse-Smale systems”, American Journal of Mathematics, 90:4 (1968), 1031–1040 | DOI | MR | Zbl

[4] A. A. Bosova, V. E. Kruglov, O. V. Pochinka, “Energy function for an $\Omega$-stable flow with a saddle connection on a sphere”, Taurida Journal of Computer Science Theory and Mathematics, 4(37) (2017), 51–58 (In Russ.)

[5] M. Peixoto, “Structural stability on two-dimensional manifolds”, Topology, 1 (1962), 101–120 | DOI | MR | Zbl

[6] M. Peixoto, “Structural stability on two-dimensional manifolds (a further remarks)”, Topology, 2 (1963), 179–180 | DOI | MR | Zbl

[7] K. G. Valeev, G. S. Finin, Liapunov functions constructing, Naukova dumka, Kiev, 1981, 411 pp. (In Russ.) | MR

[8] C. Pugh, M. Shub, “The $\Omega$-stability theorem for flows”, Inventiones Math, 11 (1970), 150–158 | DOI | MR | Zbl

[9] V. Z. Grines, O. V. Pochinka, “Construction of energetic functions for $\Omega$-stable diffeomorphisms on 2- and 3-manifolds”, Contemporary Mathematics. Fundamental Directions, 63, no. 2, 2017, 191–222 (In Russ.) | MR