Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_4_a3, author = {A. O. Kazakov and E. Yu. Karatetskaya and A. D. Kozlov and K. A. Saphonov}, title = {On the classification of homoclinic attractors of three-dimensional flows}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {443--459}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a3/} }
TY - JOUR AU - A. O. Kazakov AU - E. Yu. Karatetskaya AU - A. D. Kozlov AU - K. A. Saphonov TI - On the classification of homoclinic attractors of three-dimensional flows JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 443 EP - 459 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a3/ LA - ru ID - SVMO_2019_21_4_a3 ER -
%0 Journal Article %A A. O. Kazakov %A E. Yu. Karatetskaya %A A. D. Kozlov %A K. A. Saphonov %T On the classification of homoclinic attractors of three-dimensional flows %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2019 %P 443-459 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a3/ %G ru %F SVMO_2019_21_4_a3
A. O. Kazakov; E. Yu. Karatetskaya; A. D. Kozlov; K. A. Saphonov. On the classification of homoclinic attractors of three-dimensional flows. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 4, pp. 443-459. http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a3/
[1] L.P. Shilnikov, “On a case of existence of a countable set of periodic motions”, Dokl. Akad. Nauk SSSR, 160:3 (1965), 558-561 | Zbl
[2] L.O. Chua, M. Komuro, T. Matsumoto, “The double scroll family”, Circuits and Systems, IEEE Transactions on., 33:11 (1986), 1072-1118 | DOI | MR | Zbl
[3] L.P. Shilnikov, “The theory of bifurcations and turbulence”, Methods of qualitative theory of differential equations, Gorkiy, 1986, 150-163
[4] L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, L.O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, v. 2, World Scientific Publishing Co Pte Ltd, Singapore, Singapore, 2001, 592 pp. | MR | Zbl
[5] A.S. Gonchenko, S.V. Gonchenko, “Variety of strange pseudohyperbolic attractors in three-dimensional generalized Henon maps”, Physica D: Nonlinear Phenomena, 337 (2016), 43-57 | DOI | MR | Zbl
[6] A.D. Kozlov, “Examples of strange attractors in three-dimentional nonoriented maps”, J. SVMO, 19:2 (2017), 62–75 | Zbl
[7] D.V. Turaev, L.P. Shilnikov, “An example of a wild strange attractor”, Sb. Math., 189 (1998), 291-314 | DOI | DOI | MR | Zbl
[8] S.V. Gonchenko, A.O. Kazakov, D. Turaev, Wild pseudohyperbolic attractors in a four-dimensional Lorenz system, 2018, arXiv: 1809.07250
[9] A.S. Gonchenko, S.V. Gonchenko, A.O. Kazakov, A.D. Kozlov, “Elements of Contemporary Theory of Dynamical Chaos: A Tutorial. Part I Pseudohyperbolic Attractors”, International Journal of Bifurcation and Chaos, 28:11 (2018), 291–314 | DOI | MR
[10] V.S. Aframovich, L.P. Shilnikov, Strange attractors and quasiattractors. Nonlinear Dynamics and Turbulence, eds. G.I.Barenblatt, G.Iooss, D.D.Joseph, Pitmen, Boston, 1983 | MR
[11] I.M. Ovsyannikov, L.P. Shilnikov, “On systems with homoclinic curves of saddle-focus type”, Mat. Sb., 130(172):4(8) (1986), 552-570
[12] P. Coullet, C. Tresser, A. Arneodo, “Transition to stochasticity for a class of forced oscillators”, Physics letters A., 72:4-5 (1979), 268-270 | DOI | MR
[13] F.R. Gantmacher, The theory of matrices, Chelsea Pub. Co., New York, 1959 | MR
[14] L.P. Shilnikov, “Some instances of generation of periodic motions in n-space”, Dokl. Akad. Nauk SSSR, 143:2 (1962), 289–292 | Zbl
[15] D.V. Lyubimov, M.A. Zaks, “Two mechanisms of the transition to chaos in finite-dimensional models of convection”, Physica D: Nonlinear Phenomena, 9:1-2 (1983), 52-64 | DOI | MR | Zbl
[16] A. Rovella, “The dynamics of perturbations of the contracting Lorenz attractor”, Boletim da Sociedade Brasileira de Matematica-Bulletin/Brazilian Mathematical Society, 24:2 (1993), 233-259 | DOI | MR | Zbl
[17] A.O. Kazakov , A.D. Kozlov, “The asymmetric Lorenz attractor as an example of a new pseudohyperbolic attractor of three-dimensional systems”, Zhurnal SVMO, 20:2 (2018), 187–198
[18] P. Coullet, C. Tresser, A. Arneodo, “Possible new strange attractors with spiral structure”, Communications in Mathematical Physics, 79:4 (1981), 573-579 | DOI | MR | Zbl
[19] A.L. Shilnikov, L.P. Shilnikov, “On the nonsymmetrical Lorenz model”, International Journal of Bifurcation and Chaos, 1:4 (1991), 773-776 | DOI | MR | Zbl
[20] S.E. Newhouse, “The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms”, Publ. Math. Inst. Hautes Etudes Sci., 50 (1979), 101-151 | DOI | MR