On the connection between solutions of initial boundary-value problems for a some class of integro-differential PDE and a linear hyperbolic equation
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 4, pp. 413-429.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the second initial boundary-value problem for a certain class of second-order integro-differential PDE with integral operator. The connection of its solution with the solution of the standard second linear initial boundary-value problem for the hyperbolic equation is shown. Thus, the nonlinear problem is reduced to a standard linear problem, whose numerical solution can be obtained, for example, by the Fourier method or Galerkin method. The article provides examples of five integro-differential equations for various integral operators as particular representatives of the class of integro-differential equations for a better understanding of the problem. The application of the main theorem to these examples is shown. Some simple natural requirement is imposed on the integral operator; so, in four cases out of five the problem's solution satisfies some phase constraint. The form of these constraints is of particular interest for the further research.
Keywords: the second initial boundary value problem, integro-differential equation with PDE, phase constraint, hyperbolic equation.
@article{SVMO_2019_21_4_a1,
     author = {P. N. Burago and A. I. Egamov},
     title = {On the connection between solutions of initial boundary-value problems for a some class of integro-differential {PDE} and a linear hyperbolic equation},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {413--429},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a1/}
}
TY  - JOUR
AU  - P. N. Burago
AU  - A. I. Egamov
TI  - On the connection between solutions of initial boundary-value problems for a some class of integro-differential PDE and a linear hyperbolic equation
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2019
SP  - 413
EP  - 429
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a1/
LA  - ru
ID  - SVMO_2019_21_4_a1
ER  - 
%0 Journal Article
%A P. N. Burago
%A A. I. Egamov
%T On the connection between solutions of initial boundary-value problems for a some class of integro-differential PDE and a linear hyperbolic equation
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2019
%P 413-429
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a1/
%G ru
%F SVMO_2019_21_4_a1
P. N. Burago; A. I. Egamov. On the connection between solutions of initial boundary-value problems for a some class of integro-differential PDE and a linear hyperbolic equation. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 4, pp. 413-429. http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a1/

[1] M. M. Vajnberg, “Integro-differential equations”, Itogi nauki. Ser. Mat. anal. Teor. veroyatn. Regulir., VINITI, M., 1962, 5 –- 37 (In Russ.)

[2] S. S. Orlov, Generalized solution integro-differential high order equations in Banach space, Izd-vo IGU, Irkutsk, 2014, 150 pp. (In Russ.)

[3] A. A. Samarskij, A. P. Mihajlov, Mathematical Modeling: Ideas. Methods. Examples, FIZMATLIT, M., 2005, 320 pp. (In Russ.) | MR

[4] A. V. Kalinin, S. F. Morozov, “On stabilization of the solution of the nonlinear radiation transfer system in the two-level approximation”, DAN SSSR, 38:1 (1990), 134–135 (In Russ.) | MR

[5] A. V. Kalinin, S. F. Morozov, “On a nonlinear boundary value problem in the theory of radiation transfer”, JVM i MF, 311:2 (1990), 343–346 (In Russ.) | MR | Zbl

[6] O. A. Kuzenkov, A. I. Egamov, “The generalized Volterra model for a system with one predator and several prey”, III Mezhdunarodnaya konferenciya iz serii “Nelinejnyj mir\". "Ecologiya. Ecologicheskoe obrazovanie. Nelinejnoe myshlenie”. [III international conference of the series “Nonlinear world”. “Ecology. Environmental education. Non-linear thinking” ], Proceedings (Voronezh, 1997), 86 (In Russ.)

[7] O. A. Kuzenkov, “Properties of a class of integro-differential equations in Lebesgue space”, Nelinejnaya dinamika i upravlenie, 1, eds. S.V.Emel'yanov, S.K.Korovin, FIZMATLIT, M., 2001, 347 – 354 (In Russ.)

[8] O. A. Kuzenkov, “On a class of integro-differential equations in Lebesgue space”, Differencial'nye uravneniya, 38:1 (2002), 134–135 (In Russ.)

[9] O. A. Kuzenkov, “The Cauchy problem for a class of nonlinear differential equations in a Banach space”, Differencial'nye uravneniya, 40:1 (2004), 24–32 (In Russ.) | MR | Zbl

[10] V. F. Zajcev, A. D. Polyanin, The method of separation of variables in mathematical physics, Educational edition, Sankt-Peterburg, 2009, 92 pp. (In Russ.)

[11] A. D. Polyanin, Handbook of linear equations of mathematical physics, FIZMATLIT, M., 2001, 576 pp. (In Russ.)

[12] O. A. Kuzenkov, A. I. Egamov, “Optimal control for one class of integro-differential equations”, Izvestiya RAEN. Seriya MMMIU, 1:2 (1997), 140–145 (In Russ.) | Zbl

[13] O. A. Kuzenkov, A. I. Egamov, “Optimal control for the oscillatory process”, Vestnik NNGU. “Matematicheskoe modelirovanie i optimal'noe upravlenie”, 2 (19) (1998), 174–179 (In Russ.) | MR

[14] A. N. Tihonov, A. A. Samarskij, Equations of mathematical physics, Nauka, M., 1979, 685 pp. (In Russ.) | MR

[15] A. I. Egorov, Riccati Equations, Second edition, supplemented, SOLON-Press, M., 2017, 448 pp. (In Russ.)

[16] E. Mitchell, R. Uejt, The finite element method for partial differential equations, Mir, M., 1981, 216 pp. (In Russ.)

[17] P N. Burago, A. I. Egamov, “Application of the Galerkin method to the second initial-boundary value problem of heat conduction”, Science today. Problems and prospects of development, Proceedings of the international scientific and practical conference (Vologda, 29.11.2017), v. 1, 125-126 (In Russ.)

[18] G. M. Fihtengol'c, Course of differential and integral calculus, v. 3, FIZMATLIT, M., 2001, 662 pp. (In Russ.)