Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_4_a0, author = {A. V. Balandin}, title = {Tensor fields associated with integrable systems of chiral type}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {405--412}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a0/} }
A. V. Balandin. Tensor fields associated with integrable systems of chiral type. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 4, pp. 405-412. http://geodesic.mathdoc.fr/item/SVMO_2019_21_4_a0/
[1] M. Marvan, “On zero-curvature representations of partial differential equations”, 5th International Conference on Differential Geometry and Its Applications, Opava, 1993, 103–122 | MR | Zbl
[2] A. V. Balandin, “Characteristics of conservation laws of chiral-type systems”, Letters in Mathematical Physics, 105:1 (2015), 27–43 | DOI | MR | Zbl
[3] A. V. Balandin, “Tensor fields defined by Lax representations”, Journal of Nonlinear Mathematical Physics, 23:3 (2016), 323–334 | DOI | MR | Zbl
[4] E. V. Ferapontov, W. K. Schief, “Surfaces of Demoulin: differential geometry, Backlund transformation and integrability”, Journal of Geometry and Physics, 30 (1999), 343–363 | DOI | MR | Zbl
[5] D. K. Demskoi, V. G. Marikhin, A. G. Meshkov, “Lax representations for triplets of two-dimensional scalar fields of the chiral type”, Theoretical and Mathematical Physics, 148:2 (2006), 1034–1048 (In Russ.) | DOI | DOI | MR | Zbl