Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2019_21_3_a1, author = {M. V. Dontsova}, title = {The nonlocal solvability conditions for a system of two quasilinear equations of the first order with absolute terms}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {317--328}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2019_21_3_a1/} }
TY - JOUR AU - M. V. Dontsova TI - The nonlocal solvability conditions for a system of two quasilinear equations of the first order with absolute terms JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2019 SP - 317 EP - 328 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2019_21_3_a1/ LA - ru ID - SVMO_2019_21_3_a1 ER -
%0 Journal Article %A M. V. Dontsova %T The nonlocal solvability conditions for a system of two quasilinear equations of the first order with absolute terms %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2019 %P 317-328 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2019_21_3_a1/ %G ru %F SVMO_2019_21_3_a1
M. V. Dontsova. The nonlocal solvability conditions for a system of two quasilinear equations of the first order with absolute terms. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 21 (2019) no. 3, pp. 317-328. http://geodesic.mathdoc.fr/item/SVMO_2019_21_3_a1/
[1] B. L. Rozhdestvenskij, N. N. Yanenko, Systems of quasilinear equations and their applications to gas dynamics, Nauka Publ., Moscow, 1968, 592 pp. (In Russ.)
[2] M. I. Imanaliev, S. N. Alekseenko, “To the question of the existence of a smooth bounded solution for a system of two first-order nonlinear partial differential equations”, Doklady RAN, 379:1 (2001), 16–21 (In Russ.) | MR | Zbl
[3] M. I. Imanaliev, P. S. Pankov, S. N. Alekseenko, “Method of an additional argument”, Vestnik KazNU. Series Mathematics, mechanics, informatics, 1, Spec. issue (2006), 60–64 (In Russ.)
[4] S. N. Alekseenko, M. V. Dontsova, “The investigation of a solvability of the system of equations, describing a distribution of electrons in an electric field of sprite”, Matem. vestnik pedvuzov, universitetov Volgo-Vyatskogo regiona, 14 (2012), 34–41 (In Russ.)
[5] S. N. Alekseenko, T. A. Shemyakina, M. V. Dontsova, “Nonlocal solvability conditions for systems of first order partial differential equations”, St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 177:3 (2013), 190–201 (In Russ.)
[6] S. N. Alekseenko, M. V. Dontsova, “The solvability conditions of the system of long waves in a water rectangular channel, the depth of which varies along the axis”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 18:2 (2016), 115–124 (In Russ.) | Zbl
[7] M. V. Dontsova, “Nonlocal solvability conditions of the Cauchy problem for a system of first order partial differential equations with continuous and bounded right-hand sides”, Vestnik of VSU. Series: Physics. Mathematics, 4 (2014), 116–130 (In Russ.) | Zbl
[8] M. V. Dontsova, “The nonlocal existence of a bounded solution of the Cauchy problem for a system of two first order partial differential equations with continuous and bounded right-hand sides”, Vestnik TvGU. Seriya: Prikladnaya matematika, 3 (2014), 21–36 (In Russ.)
[9] S. N. Alekseenko, M. V. Dontsova, “The local existence of a bounded solution of the system of equations, describing a distribution of electrons in low-pressure plasma in an electric field of sprite”, Matem. vestnik pedvuzov, universitetov Volgo-Vyatskogo regiona, 15 (2013), 52–59 (In Russ.)
[10] M. V. Dontsova, “Nonlocal solvability conditions for Cauchy problem for a system of first order partial differential equations with special right-hand sides”, Ufa Mathematical Journal, 6:4 (2014), 71–82 (In Russ.) | MR
[11] M. V. Dontsova, “Solvability of Cauchy problem for a system of first order quasilinear equations with right-hand sides $f_1={a_2}u(t,x) + {b_2}(t)v(t,x),$ $f_2={g_2}v(t,x)$”, Ufa Mathematical Journal, 11:1 (2019), 26–38 (In Russ.) | MR
[12] S. N. Alekseenko, M. V. Dontsova, D. E. Pelinovsky, “Global solutions to the shallow-water system with a method of an additional argument”, Applicable Analysis, 96:9 (2017), 1444–1465 | DOI | MR | Zbl