Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_4_a7, author = {A. Yu. Pavlov}, title = {Class of controllable systems of differential equations for infinite time}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {439--447}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a7/} }
TY - JOUR AU - A. Yu. Pavlov TI - Class of controllable systems of differential equations for infinite time JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 439 EP - 447 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a7/ LA - ru ID - SVMO_2018_20_4_a7 ER -
A. Yu. Pavlov. Class of controllable systems of differential equations for infinite time. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 439-447. http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a7/
[1] E. V. Voskresenskiy, Asymptotic methods: theory and regulations, SVMO, Saransk, 2001, 300 pp. (In Rus.)
[2] V. I. Zubov, Lectures by the control theory, Nauka, Moscow, 1975, 495 pp. (In Russ.)
[3] V. I. Zubov, Theory of oscillations: textbook for universities, Vyshaya shkola, Moscow, 1979, 400 pp. (In Russ.)
[4] A. Yu. Pavlov, Equal method and a controlability of non-linear systems, PhD phys. and math. sci. diss., Saransk, 1995, 143 pp. (in Russ.)
[5] E. V. Voskresenskiy, Metody sravneniya v nelineynom analize, Saratov University Publishing House, Saransk Branch, Saransk, 1990, 224 pp. (In Russ.) | MR
[6] L. Cesari, “Asymptotic behavior and solutions stability of ordinary differential equations”, Mir, 1964, Moscow, 480 pp. (In Russ.)
[7] E. V. Voskresenskiy, “About Cesari problem”, Differentsyalnye uravneniya, 25:9 (1989) (In Russ.) | MR
[8] A. Yu. Pavlov, “Controllability for infinite time and asymptotic equilibrium”, Zhurnal SVMO, 17:2 (2015), 81–84, Saransk (In Russ.) | MR | Zbl
[9] B. P. Demidovich, Lectures by the mathematical stability theory, Nauka, Moscow, 1967, 472 pp. (In Russ.) | MR
[10] P. Hartman, Ordinary differential equations, Mir, M., 1970, 720 pp. (In Russ.)