On number of moduli for gradient surface height function flows
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 419-428.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1978 J. Palis invented continuum topologically non-conjugate systems in a neighbourhood of a system with a heteroclinic contact; in other words, he invented so-called moduli. W. de Melo and С. van Strien in 1987 described a diffeomorphism class with a finite number of moduli. They discovered that a chain of saddles taking part in the heteroclinic contact of such diffeomorphism includes not more than three saddles. Surprisingly, such effect does not happen in flows. Here we consider gradient flows of the height function for an orientable surface of genus $g>0$. Such flows have a chain of $2g$ saddles. We found that the number of moduli for such flows is $2g-1$ which is the straight consequence of the sufficient topological conjugacy conditions for such systems given in our paper. A complete topological equivalence invariant for such systems is four-colour graph carrying the information about its cells relative position. Equipping the graph's edges with the analytical parameters — moduli, connected with the saddle connections, gives the sufficient conditions of the flows topological conjugacy.
Keywords: modulus of stability, gradient flow, topological conjugacy, four-colour graph, topological invariant.
@article{SVMO_2018_20_4_a5,
     author = {V. E. Kruglov},
     title = {On number of moduli for gradient surface height function flows},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {419--428},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a5/}
}
TY  - JOUR
AU  - V. E. Kruglov
TI  - On number of moduli for gradient surface height function flows
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 419
EP  - 428
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a5/
LA  - ru
ID  - SVMO_2018_20_4_a5
ER  - 
%0 Journal Article
%A V. E. Kruglov
%T On number of moduli for gradient surface height function flows
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 419-428
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a5/
%G ru
%F SVMO_2018_20_4_a5
V. E. Kruglov. On number of moduli for gradient surface height function flows. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 419-428. http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a5/

[1] J. Palis, “A Differentiable invariant of topological conjugacies and moduli of stability”, Astérisque, 51, 1978, 335–346 | MR | Zbl

[2] W. De Melo, S. J. van Strien, “Diffeomorphisms on surfaces with a finite number of moduli”, Ergodic Theory and Dynamical Systems, 7 (1987), 415–462 | DOI | MR | Zbl

[3] C. Pugh, M. Shub, “The $\Omega$-stability theorem for flows”, Inven. Math., 11 (1970), 150–158 | DOI | MR | Zbl

[4] “Multicolour graph as a complete topological invariant for $\Omega$-stable flows without periodic trajectories on surfaces”, Matematicheskiy sbornik, 209:1 (2018), 100–126 (In Russ.) | DOI | MR | Zbl

[5] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, Institut kompyuternykh issledovaniy Publ., Moscow-Izhevsk, 2003 (In Russ., transl. from Eng.) | MR

[6] T. M. Mitryakova, O. V. Pochinka, “Necessary and sufficient conditions for the topological conjugacy of surface diffeomorphisms with a finite number of orbits of heteroclinic tangency”, Trudy mat. inst. im. V.A. Steklova, 270, 2010, 198–219 (In Russ.) | MR | Zbl

[7] V. Kruglov, “Topological conjugacy of gradient-like flows on surfaces”, Dinamicheskie sistemy, 8(36):1 (2018), 15–21 (to appear) | Zbl