Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_4_a5, author = {V. E. Kruglov}, title = {On number of moduli for gradient surface height function flows}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {419--428}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a5/} }
V. E. Kruglov. On number of moduli for gradient surface height function flows. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 419-428. http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a5/
[1] J. Palis, “A Differentiable invariant of topological conjugacies and moduli of stability”, Astérisque, 51, 1978, 335–346 | MR | Zbl
[2] W. De Melo, S. J. van Strien, “Diffeomorphisms on surfaces with a finite number of moduli”, Ergodic Theory and Dynamical Systems, 7 (1987), 415–462 | DOI | MR | Zbl
[3] C. Pugh, M. Shub, “The $\Omega$-stability theorem for flows”, Inven. Math., 11 (1970), 150–158 | DOI | MR | Zbl
[4] “Multicolour graph as a complete topological invariant for $\Omega$-stable flows without periodic trajectories on surfaces”, Matematicheskiy sbornik, 209:1 (2018), 100–126 (In Russ.) | DOI | MR | Zbl
[5] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, Institut kompyuternykh issledovaniy Publ., Moscow-Izhevsk, 2003 (In Russ., transl. from Eng.) | MR
[6] T. M. Mitryakova, O. V. Pochinka, “Necessary and sufficient conditions for the topological conjugacy of surface diffeomorphisms with a finite number of orbits of heteroclinic tangency”, Trudy mat. inst. im. V.A. Steklova, 270, 2010, 198–219 (In Russ.) | MR | Zbl
[7] V. Kruglov, “Topological conjugacy of gradient-like flows on surfaces”, Dinamicheskie sistemy, 8(36):1 (2018), 15–21 (to appear) | Zbl