Classification of rough transformations of a circle from a modern point of view
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 408-418.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the authors use modern methods and approaches to present a solution to the problem of the topological classification of circle’s rough transformations in canonical formulation. In the modern theory of dynamical systems such problems are understood as the complete topological classification: finding topological invariants, proving the completeness of the set of invariants found and constructing a standard representative from a given set of topological invariants. Namely, in the first theorem of this paper the type of periodic data of circle’s rough transformations is established. In the second theorem necessary and sufficient conditions of their conjugacy are proved. These conditions mean coincidence of periodic data and rotation numbers. In the third theorem the admissible set of parameters is implemented by a rough transformation of a circle. While proving the theorems, we assume that the results on the local topological classification of hyperbolic periodic points, as well as the results on the global representation of the ambient manifold as a union of invariant manifolds of periodic points, are known.
Keywords: rough transformations of a circle, topological classification.
@article{SVMO_2018_20_4_a4,
     author = {A. E. Kolobyanina and E. Nozdrinova and O. V. Pochinka},
     title = {Classification of rough transformations of a circle from a modern point of view},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {408--418},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a4/}
}
TY  - JOUR
AU  - A. E. Kolobyanina
AU  - E. Nozdrinova
AU  - O. V. Pochinka
TI  - Classification of rough transformations of a circle from a modern point of view
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 408
EP  - 418
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a4/
LA  - ru
ID  - SVMO_2018_20_4_a4
ER  - 
%0 Journal Article
%A A. E. Kolobyanina
%A E. Nozdrinova
%A O. V. Pochinka
%T Classification of rough transformations of a circle from a modern point of view
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 408-418
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a4/
%G ru
%F SVMO_2018_20_4_a4
A. E. Kolobyanina; E. Nozdrinova; O. V. Pochinka. Classification of rough transformations of a circle from a modern point of view. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 408-418. http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a4/

[1] A.A. Andronov, L.S. Pontryagin, “Rough systems”, Report of the Academy of Sciences of the USSR, 14:5 (1937), 247–250 (In Russ.)

[2] A.G. Mayer, “Coarse transformation of a circle into a circle”, Scientific notes Gorky. state. University, 12 (1939), 215–229 (In Russ.)

[3] M. M. Peixoto, “On structural stability”, Ann. Math., 69 (1959), 199–222 | DOI | MR | Zbl

[4] Mañé R., “A proof of $C^1$ stability conjecture”, Publ. Math. IHES, 66 (1988), 161–210 | DOI | MR | Zbl

[5] Robinson C., “Structural stability of $C^1$ diffeomorphisms”, J. Diff. Equat., 22:1 (1976), 28–73 | DOI | MR | Zbl

[6] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:1 (1967), 741–817 (In Russ.) | MR

[7] J. Palis, “On Morse-Smale dynamical systems”, Topology, 8:4 (1969), 385–404 | DOI | MR

[8] J. Palis, S. Smale, “Structural stability theorems”, Global Analysis, Proc. Sympos. Pure Math., 14, 1970, 223–231 | DOI | MR | Zbl

[9] J. Palis, W. de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York–Heidelberg–Berlin, 1982, 301 pp. (In Russ.)

[10] V. Grines, T. Medvedev, O. Pochinka, Dynamical Systems on 2- and 3-Manifolds, Springer International Publishing Switzerland, 2016, 313 pp. | Zbl

[11] V. Grines, Yu. Levchenko, V. Medvedev, O. Pochinka, “The topological classification of structural stable 3-diffeomorphisms with two-dimensional basic sets”, Nonlinearity, 28:11 (2015), 4081–4102 | DOI | MR | Zbl