Riemannian foliations with Ehresmann connection
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 395-407.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the structural theory of Molino for Riemannian foliations on compact manifolds and complete Riemannian manifolds may be generalized to a Riemannian foliations with Ehresmann connection. Within this generalization there are no restrictions on the codimension of the foliation and on the dimension of the foliated manifold. For a Riemannian foliation $(M, F)$ with Ehresmann connection it is proved that the closure of any leaf forms a minimal set, the family of all such closures forms a singular Riemannian foliation $(M, \overline{F})$. It is shown that in $M$ there exists a connected open dense $\overline{F}$-saturated subset $M_0$ such that the induced foliation $(M_0, \overline{F}|_{M_0})$ is formed by fibers of a locally trivial bundle over some smooth Hausdorff manifold. The equivalence of some properties of Riemannian foliations $(M, F)$ with Ehresmann connection is proved. In particular, it is shown that the structural Lie algebra of $(M, F)$ is equal to zero if and only if the leaf space of $(M, F)$ is naturally endowed with a smooth orbifold structure. Constructed examples show that for foliations with transversally linear connection and for conformal foliations the similar statements are not true in general.
Keywords: Riemannian foliation, Ehresmann connection, local stability of a leaf, minimal set.
@article{SVMO_2018_20_4_a3,
     author = {N. I. Zhukova},
     title = {Riemannian foliations with {Ehresmann} connection},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {395--407},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a3/}
}
TY  - JOUR
AU  - N. I. Zhukova
TI  - Riemannian foliations with Ehresmann connection
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 395
EP  - 407
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a3/
LA  - ru
ID  - SVMO_2018_20_4_a3
ER  - 
%0 Journal Article
%A N. I. Zhukova
%T Riemannian foliations with Ehresmann connection
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 395-407
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a3/
%G ru
%F SVMO_2018_20_4_a3
N. I. Zhukova. Riemannian foliations with Ehresmann connection. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 395-407. http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a3/

[1] R. Hermann, “The differential geometry of foliations”, Ann. of Math., 72:3 (1960), 445–457 | DOI | MR | Zbl

[2] B. Reinhart, “Foliated manifolds with bundle-like metrics”, Ann. of Math., 69:3 (1959), 119–132 | DOI | MR | Zbl

[3] A. Haefliger, “Pseudogroups of local isometries”, Res. Notes in Math., 131 (1985), 174–197 | MR | Zbl

[4] P. Molino, Riemannian foliations, Progress in Math., 73, Birkhauser Boston, Boston–Basel, 1988, 339 pp. | MR

[5] N. Zhukova, “On the stability of leaves of Riemannian foliations”, Ann. Global Anal. and Geom., 5:3 (1987), 261–271 | DOI | MR | Zbl

[6] N. I. Zhukova, “Local and global stability of leaves os conformal foliations”, Proceedings of the International Conference Foliations 2012, Word Scientific Press, Singapur, 2013, 215–233 | MR | Zbl

[7] E. Salem, “Riemannian foliations and pseudogroups of isometries”, Application D in [Mo], 265–296

[8] I. Moerdijk, J. Mrcun, Introduction to foliations and Lie groupoids, Cambridge studies in advanced mathematics, 91, New York, Cambridge University Press, 2003, 173 pp. | MR

[9] N. I. Zhukova, “Global attractors of complete conformal foliations”, Sbornik: Mathematics, 203:3 (2012), 380–405 | DOI | MR | Zbl

[10] N. I. Zhukova, “Minimal sets of Cartan foliations”, Proc. Steklov Inst. Math., 256:1 (2007), 105–135 | DOI | MR | Zbl

[11] I. Tamura, Topology of foliations: an introduction, Translations of Math. Monographs, 87, AMS, Providence, Rhode Island, 1992, 317 pp. | MR

[12] R. A. Blumenthal, J.J. Hebda, “Ehresmann connections for foliations”, Indiana Univ. Math. J., 33:4 (1984), 597–611 | DOI | MR | Zbl