Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_4_a3, author = {N. I. Zhukova}, title = {Riemannian foliations with {Ehresmann} connection}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {395--407}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a3/} }
N. I. Zhukova. Riemannian foliations with Ehresmann connection. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 395-407. http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a3/
[1] R. Hermann, “The differential geometry of foliations”, Ann. of Math., 72:3 (1960), 445–457 | DOI | MR | Zbl
[2] B. Reinhart, “Foliated manifolds with bundle-like metrics”, Ann. of Math., 69:3 (1959), 119–132 | DOI | MR | Zbl
[3] A. Haefliger, “Pseudogroups of local isometries”, Res. Notes in Math., 131 (1985), 174–197 | MR | Zbl
[4] P. Molino, Riemannian foliations, Progress in Math., 73, Birkhauser Boston, Boston–Basel, 1988, 339 pp. | MR
[5] N. Zhukova, “On the stability of leaves of Riemannian foliations”, Ann. Global Anal. and Geom., 5:3 (1987), 261–271 | DOI | MR | Zbl
[6] N. I. Zhukova, “Local and global stability of leaves os conformal foliations”, Proceedings of the International Conference Foliations 2012, Word Scientific Press, Singapur, 2013, 215–233 | MR | Zbl
[7] E. Salem, “Riemannian foliations and pseudogroups of isometries”, Application D in [Mo], 265–296
[8] I. Moerdijk, J. Mrcun, Introduction to foliations and Lie groupoids, Cambridge studies in advanced mathematics, 91, New York, Cambridge University Press, 2003, 173 pp. | MR
[9] N. I. Zhukova, “Global attractors of complete conformal foliations”, Sbornik: Mathematics, 203:3 (2012), 380–405 | DOI | MR | Zbl
[10] N. I. Zhukova, “Minimal sets of Cartan foliations”, Proc. Steklov Inst. Math., 256:1 (2007), 105–135 | DOI | MR | Zbl
[11] I. Tamura, Topology of foliations: an introduction, Translations of Math. Monographs, 87, AMS, Providence, Rhode Island, 1992, 317 pp. | MR
[12] R. A. Blumenthal, J.J. Hebda, “Ehresmann connections for foliations”, Indiana Univ. Math. J., 33:4 (1984), 597–611 | DOI | MR | Zbl