Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_4_a2, author = {M. V. Dontsova}, title = {The nonlocal solvability conditions for a system of quasilinear equations of the first order special right-hand sides}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {384--394}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a2/} }
TY - JOUR AU - M. V. Dontsova TI - The nonlocal solvability conditions for a system of quasilinear equations of the first order special right-hand sides JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 384 EP - 394 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a2/ LA - ru ID - SVMO_2018_20_4_a2 ER -
%0 Journal Article %A M. V. Dontsova %T The nonlocal solvability conditions for a system of quasilinear equations of the first order special right-hand sides %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2018 %P 384-394 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a2/ %G ru %F SVMO_2018_20_4_a2
M. V. Dontsova. The nonlocal solvability conditions for a system of quasilinear equations of the first order special right-hand sides. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 384-394. http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a2/
[1] M. V. Dontsova, “Nonlocal solvability conditions for Cauchy problem for a system of first order partial differential equations with special right-hand sides”, Ufa Mathematical Journal, 6:4 (2014), 68–80 | MR
[2] M. I. Imanaliev, S. N. Alekseenko, “To the question of the existence of a smooth bounded solution for a system of two first-order nonlinear partial differential equations”, Doklady RAN, 379:1 (2001), 16–21 (In Russ.) | MR | Zbl
[3] M. I. Imanaliev, P. S. Pankov, S. N. Alekseenko, “Method of an additional argument”, Vestnik KazNU. Series: Mathematics, mechanics, informatics, 1, Spec. issue (2006), 60—64 (In Russ.)
[4] S. N. Alekseenko, M. V. Dontsova, “The investigation of a so lvability of the system of equations, describing a distribution of electrons in an electric field of sprite”, Matem. vestnik pedvuzov, universitetov Volgo-Vyatskogo regiona, 14 (2012), 34–41 (In Russ.)
[5] S. N. Alekseenko, T. A. Shemyakina, M. V. Dontsova, “Nonlocal solvability conditions for systems of first order partial differential equations”, St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 177:3 (2013), 190–201 (In Russ.)
[6] S. N. Alekseenko, M. V. Dontsova, “The solvability conditions of the system of long waves in a water rectangular channel, the depth of which varies along the axis”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 18:2 (2016), 115–124 (In Russ.) | Zbl
[7] M. V. Dontsova, “Nonlocal solvability conditions of the Cauchy problem for a system of first order partial differential equations with continuous and bounded right-hand sides”, Vestnik of VSU. Series: Physics. Mathematics, 4 (2014), 116–130 (In Russ.) | Zbl
[8] M. V. Dontsova, “The nonlocal existence of a bounded solution of the Cauchy problem for a system of two first order partial differential equations with continuous and bounded right-hand sides”, Vestnik TvGU. Seriya: Prikladnaya matematika, 3 (2014), 21–36 (In Russ.)
[9] T. A. Shemyakina, “Conditions for the existence and diferentiability of solutions of Frankl in the hyperbolic case”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 13:2 (2011), 127–131 (In Russ.) | Zbl
[10] S. N. Alekseenko, M. V. Dontsova, D. E. Pelinovsky, “Global solutions to the shallow-water system with a method of an additional argument”, Applicable Analysis, 96:9 (2017), 1444–1465 | DOI | MR | Zbl
[11] T. A. Shemyakina, “The theorem on existence of a bounded solution of the Cauchy problem for the Frankl system of hyperbolic type”, St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 146:2 (2012), 130–140
[12] S. N. Alekseenko, M. V. Dontsova, D. E. Pelinovsky, “Global solutions to the shallow-water system with a method of an additional argument”, Applicable Analysis, 96:9 (2017), 1444–1465 | DOI | MR | Zbl