On the continuous analogue of the Seidel method
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 364-377.

Voir la notice de l'article provenant de la source Math-Net.Ru

Continuous Seidel method for solving systems of linear and nonlinear algebraic equations is constructed in the article, and the convergence of this method is investigated. According to the method discussed, solving a system of algebraic equations is reduced to solving systems of ordinary differential equations with delay. This allows to use rich arsenal of numerical ODE solution methods while solving systems of algebraic equations. The main advantage of the continuous analogue of the Seidel method compared to the classical one is that it does not require all the elements of the diagonal matrix to be non-zero while solving linear algebraic equations’ systems. The continuous analogue has the similar advantage when solving systems of nonlinear equations.
Keywords: systems of algebraic equations, Seidel method, systems of ordinary differential equations, delay.
@article{SVMO_2018_20_4_a0,
     author = {I. V. Boykov and A. I. Boikova},
     title = {On the continuous analogue of the {Seidel} method},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {364--377},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a0/}
}
TY  - JOUR
AU  - I. V. Boykov
AU  - A. I. Boikova
TI  - On the continuous analogue of the Seidel method
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 364
EP  - 377
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a0/
LA  - ru
ID  - SVMO_2018_20_4_a0
ER  - 
%0 Journal Article
%A I. V. Boykov
%A A. I. Boikova
%T On the continuous analogue of the Seidel method
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 364-377
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a0/
%G ru
%F SVMO_2018_20_4_a0
I. V. Boykov; A. I. Boikova. On the continuous analogue of the Seidel method. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 364-377. http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a0/

[1] D.K. Faddeev, V.N. Faddeeva, Computational methods of linear algebra, Fizmatgiz, Moscow, 1963, 734 pp. (In Russ.) | MR

[2] N.S.Bakhvalov, Numerical methods, Nauka, Moscow, 1973, 632 pp. (In Russ.)

[3] J.M. Ortega, W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, NY., 1970

[4] M. A. Krasnoselsky , G.M. Vainikko , P.P. Zabreiko, Ya. B. Rutitsky, V.Ya. Stetsenko, Approximate solution of operator equations, Nauka, Moscow, 1969, 456 pp. (In Russ.) | MR

[5] I. V. Boikov, “On a continuous method for solving nonlinear operator equations”, Differential equations, 48:9 (2012), 1308-1314 (In Russ.) | MR | Zbl

[6] I. V. Boykov, V. A. Roudnev, A. I. Boykova. O. A. Baulina, “New iterative method for solving linear and nonlinear hypersingular integral equations”, Applied Numerical Mathematics, 127 (2018), 280–305 | DOI | MR | Zbl

[7] Yu.L. Daletsky , M.G. Krein, Stability of solutions of differential equations in Banach space, Nauka, Moscow, 1970, 536 pp. (In Russ.)

[8] K. Dekker, J. Verver, Stability of Runge-Kutta methods for rigid nonlinear differential equations, Mir, Moscow, 1988, 334 pp. (In Russ.)

[9] I.V. Boikov, Stability of solutions of differential equations, Publishing House of Penza State University, Penza, 2008, 244 pp. (In Russ.)

[10] L.V. Kantorovich, G.P. Akilov, Functional analysis, Nauka, Moscow, 1984, 752 pp. (In Russ.)

[11] I.V. Boikov, “Stability of steady-state solutions of systems of nonlinear nonautonomous delay differential equations”, Differential Equations, 54:4 (2018), 427–449 | DOI | MR | Zbl