@article{SVMO_2018_20_4_a0,
author = {I. V. Boykov and A. I. Boikova},
title = {On the continuous analogue of the {Seidel} method},
journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
pages = {364--377},
year = {2018},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a0/}
}
I. V. Boykov; A. I. Boikova. On the continuous analogue of the Seidel method. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 4, pp. 364-377. http://geodesic.mathdoc.fr/item/SVMO_2018_20_4_a0/
[1] D.K. Faddeev, V.N. Faddeeva, Computational methods of linear algebra, Fizmatgiz, Moscow, 1963, 734 pp. (In Russ.) | MR
[2] N.S.Bakhvalov, Numerical methods, Nauka, Moscow, 1973, 632 pp. (In Russ.)
[3] J.M. Ortega, W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, NY., 1970
[4] M. A. Krasnoselsky , G.M. Vainikko , P.P. Zabreiko, Ya. B. Rutitsky, V.Ya. Stetsenko, Approximate solution of operator equations, Nauka, Moscow, 1969, 456 pp. (In Russ.) | MR
[5] I. V. Boikov, “On a continuous method for solving nonlinear operator equations”, Differential equations, 48:9 (2012), 1308-1314 (In Russ.) | MR | Zbl
[6] I. V. Boykov, V. A. Roudnev, A. I. Boykova. O. A. Baulina, “New iterative method for solving linear and nonlinear hypersingular integral equations”, Applied Numerical Mathematics, 127 (2018), 280–305 | DOI | MR | Zbl
[7] Yu.L. Daletsky , M.G. Krein, Stability of solutions of differential equations in Banach space, Nauka, Moscow, 1970, 536 pp. (In Russ.)
[8] K. Dekker, J. Verver, Stability of Runge-Kutta methods for rigid nonlinear differential equations, Mir, Moscow, 1988, 334 pp. (In Russ.)
[9] I.V. Boikov, Stability of solutions of differential equations, Publishing House of Penza State University, Penza, 2008, 244 pp. (In Russ.)
[10] L.V. Kantorovich, G.P. Akilov, Functional analysis, Nauka, Moscow, 1984, 752 pp. (In Russ.)
[11] I.V. Boikov, “Stability of steady-state solutions of systems of nonlinear nonautonomous delay differential equations”, Differential Equations, 54:4 (2018), 427–449 | DOI | MR | Zbl