Dynamics of sedimentation of particle in a viscous fluid in the presence of two flat walls
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 3, pp. 318-326.

Voir la notice de l'article provenant de la source Math-Net.Ru

The model problem of sedimentation of a solid spherical particle in a viscous fluid bordering two solid planar surfaces is considered. To find the solution of the hydrodynamic equations in the approximation of small Reynolds numbers with boundary conditions on a particle and on two planes, a procedure developed for numerical simulation of the dynamics of a large number of particles in a viscous fluid with one plane wall is used. The procedure involves usage of fictive particles located symmetrically to real ones with respect to the plane. To solve the problem of the real particle’s sedimentation in the presence of two planes, a system of fictive particles is introduced. An approximate solution was found using four fictive particles. Basing on this solution, numerical results are obtained on dynamics of particle deposition for the cases of planes oriented parallel and perpendicular to each other. In particular, the values of linear and angular velocities of a particle are found, depending on the distance to each plane and on the direction of gravity. In the limiting case, when one of the planes is infinitely far from the particle, we obtain known results on the dynamics of particle sedimentation along and perpendicular to one plane.
Keywords: numerical modeling, flat walls.
Mots-clés : viscous fluid, particle, hydrodynamic interaction, sedimentation
@article{SVMO_2018_20_3_a5,
     author = {S. I. Martynov and T. V. Pronkina and N. V. Dvoryaninova and T. V. Karyagina},
     title = {Dynamics of sedimentation of particle  in a viscous fluid in the presence of two flat walls},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {318--326},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a5/}
}
TY  - JOUR
AU  - S. I. Martynov
AU  - T. V. Pronkina
AU  - N. V. Dvoryaninova
AU  - T. V. Karyagina
TI  - Dynamics of sedimentation of particle  in a viscous fluid in the presence of two flat walls
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 318
EP  - 326
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a5/
LA  - ru
ID  - SVMO_2018_20_3_a5
ER  - 
%0 Journal Article
%A S. I. Martynov
%A T. V. Pronkina
%A N. V. Dvoryaninova
%A T. V. Karyagina
%T Dynamics of sedimentation of particle  in a viscous fluid in the presence of two flat walls
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 318-326
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a5/
%G ru
%F SVMO_2018_20_3_a5
S. I. Martynov; T. V. Pronkina; N. V. Dvoryaninova; T. V. Karyagina. Dynamics of sedimentation of particle  in a viscous fluid in the presence of two flat walls. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 3, pp. 318-326. http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a5/

[1] R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, “Droplet based microfluidics”, Reports on progress in physics, 75 (2012), 016601 | DOI

[2] M. T. Guo, A. Rotem, J. A. Heyman, D. A. Weitz, “Droplet microfluidics for high-throughput biological assays”, Lab on a Chip., 12 (2012), 2146-2155 | DOI

[3] A. Gunther, K. F. Jensen, “Multiphase microfluidics: from flow characteristics to chemical and materials synthesis”, Lab on a Chip., 6:12 (2006), 1487-1503 | DOI

[4] Sh. Gupta, K. Ramesh, S. Ahmed, V. Kakkar, “Lab-on-Chip Technology: A Review on Design Trends and Future Scope in Biomedical Applications”, International Journal of Bio-Science and Bio-Technology, 8:5 (2016), 311-322 | DOI

[5] H. Brenner, “The slow motion of a sphere through a viscous fluid towards a plane surface”, Chem. Eng. Sci., 16 (1961), 242-251 | DOI

[6] I. Happel, H. Brenner, Low Reynolds number hydrodinamics, Prentice - Hall, Englewood Giffs, 1965, 553 pp. | MR

[7] M. E. O'Neill, K. Stewartson, “On the slow motion of a sphere parallel to a nearby plane wall”, J. Fluid Mech., 27 (1967), 705-724 | DOI | MR | Zbl

[8] M. D. A. Cooley, M. E. O'Neill, “On the slow motion generated in a viscous fluid by the approaching of a sphere to a plane wall or a stationary sphere”, Mathematika, 16 (1969), 37-49 | DOI | Zbl

[9] M. E. Staben, A. Z. Zinchenko, R. H. Davis, “Dynamic simulation of spheroid motion between two parallel plane walls in low-Reynolds-number Poiseuille flow”, J. Fluid Mech., 553 (2006), 187-226 | DOI | MR | Zbl

[10] A. Z. Zinchenko, J. F. Ashley, R. H. Davis, “A moving-frame boundary-integral method for particle transport in microchannels of complex shape”, Physics of Fluids, 24 (2012), 043302 | DOI

[11] V. E. Baranov, S. I. Martynov, “Simulation of Particle Dynamics in a Viscous Fluid near a Plane Wall”, Computational Mathematics and Mathematical Physics, 50:50 (2010), 1588–1604 | DOI | MR | Zbl

[12] V. E. Baranov, S. I. Martynov, “Effect of the Hydrodynamic Interaction of a Large Number of Particles on Their Sedimentation Rate in a Viscous Fluid”, Fluid Dynamics, 39:1 (2004), 136–147 | DOI | MR | Zbl