The sufficient conditions for polystability of solutions of~nonlinear systems of ordinary differential equations
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 3, pp. 304-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article states the sufficient polystability conditions for part of variables for nonlinear systems of ordinary differential equations with a sufficiently smooth right-hand side. The obtained theorem proof is based on the establishment of a local componentwise Brauer asymptotic equivalence. An operator in the Banach space that connects the solutions of the nonlinear system and its linear approximation is constructed. This operator satisfies the conditions of the Schauder principle, therefore, it has at least one fixed point. Further, using the estimates of the non-zero elements of the fundamental matrix, conditions that ensure the transition of the properties of polystability are obtained, if the trivial solution of the linear approximation system to solutions of a nonlinear system that is locally componentwise asymptotically equivalent to its linear approximation. There are given examples, that illustrate the application of proven sufficient conditions to the study of polystability of zero solutions of nonlinear systems of ordinary differential equations, including in the critical case, and also in the presence of positive eigenvalues.
Keywords: nonlinear ordinary differential equations, local componentwise Brauer asymptotic equivalence, the Shauder principle for a fixed point, stability with respect to a part of variables.
@article{SVMO_2018_20_3_a4,
     author = {P. A. Shamanaev and O. S. Yazovtseva},
     title = {The sufficient conditions for polystability of solutions of~nonlinear systems of ordinary differential equations},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {304--317},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a4/}
}
TY  - JOUR
AU  - P. A. Shamanaev
AU  - O. S. Yazovtseva
TI  - The sufficient conditions for polystability of solutions of~nonlinear systems of ordinary differential equations
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 304
EP  - 317
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a4/
LA  - ru
ID  - SVMO_2018_20_3_a4
ER  - 
%0 Journal Article
%A P. A. Shamanaev
%A O. S. Yazovtseva
%T The sufficient conditions for polystability of solutions of~nonlinear systems of ordinary differential equations
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 304-317
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a4/
%G ru
%F SVMO_2018_20_3_a4
P. A. Shamanaev; O. S. Yazovtseva. The sufficient conditions for polystability of solutions of~nonlinear systems of ordinary differential equations. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 3, pp. 304-317. http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a4/

[1] A. M. Lyapunov, “The investigation of one special cases of the problem of motion stability”, Sobr. soch., v. 2, Izd-vo AN SSSR, M.-L., 1956, 272–331 (In Russ.)

[2] I. G. Malkin, “On the stability of motion in the sense of Lyapunov”, Mat. sb., 3:1 (1949), 63–100 | MR

[3] V. V. Rumyantsev, “On motion stability with respect to a part of variables”, Vestn. Mosk. Univ., Ser. Mat., Phiz., Astron., Khim., 1957, 9–16 (In Russ.)

[4] V. V. Rumyantsev, A. S. Oziraner, Stability and stabilization of motion with respect to a part of the variables, Nauka Publ., Moscow, 1987, 253 pp. (In Russ.)

[5] V. I. Vorotnikov, Stability of dynamical systems with respect to a part of variables, Nauka Publ, Moscow, 1991, 271 pp. (In Russ.)

[6] V. I. Vorotnikov, “Problems and methods of investigation of stability and stabilization with respect to a part of the variables: research directions, results, features”, Avtomat. i telemekh., 3:1 (1993), 3–62 (In Russ.) | Zbl

[7] K. Peiffer, N. Rouche, “Liapounov's second method applied to partial stability”, J. Mecanique, 8:2 (1969), 323–334 | MR | Zbl

[8] P. Fergola, V. Moauro, “On partial stability”, Ricerche Mat., 19:2 (1970), 185–207 | MR | Zbl

[9] S. Corduneanu, “Some problems concerning partial stability”, Meccanica Non-lineare Stability, 6 (1971), 141–154 | MR | Zbl

[10] V. N. Shchennikov, “Investigation of the stability with respect to part of the variables of differential systems with homogeneous right-hand sides”, Differ. Uravn., 20:9 (1984), 1645–1649 (In Russ.) | MR

[11] V. N. Shchennikov, “On partial stability in the critical case of 2k pure imaginary roots”, Differentscialnye i integralnye uravneniya: metody topologicheskoy dinamiki, 1985 (In Russ.)

[12] V. P. Prokopyev, “On stability with respect to some of the variables in the critical case of a single zero root”, Journal of Applied Mathematics and Mechanics, 39:3 (1975) (In Russ.) | MR | Zbl

[13] E. V. Voskresenskiy, Asymptotic methods: theory and applications, SVMO Publ., Saransk, 2000, 300 pp. (In Russ.)

[14] E. V. Voskresenskiy, Comparison methods in nonlinear analysys, Sarat. Univercity publ., Saransk, 1990, 224 pp. (In Russ.) | MR

[15] O. S. Yazovtseva, “The local component-wise asymptotic equivalence and its application to investigate for stability with respect to a part of variables”, Ogarev-online, 13 (2017) (In Russ.)

[16] P. A. Shamanaev, O. S. Yazovtseva, “The sufficient conditions of local asymptotic equivalence of nonlinear systems of ordinary differential equations and its application for investigation of stability respect to part of variables”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 19:1 (2017), 102–115 (In Russ.) | DOI | Zbl

[17] A. B. Aminov, T. K. Sirazetdinov, “The Lyapunov functions method in the problems of polystability of movements”, Appl. Maths. Mechs., 51:5 (1987), 709–716 (In Russ.) | MR | Zbl

[18] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemyitskiy, The theory of Lyapunov exponents and its applications to stability problems, Nauka Publ., Moscow, 1966, 576 pp. (In Russ.) | MR

[19] V. A. Trenogin, Functional analysis, Nauka Publ., Moscow, 1980, 249 pp. (In Russ.)