On the analytical solution of one creep problem
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 3, pp. 282-294.

Voir la notice de l'article provenant de la source Math-Net.Ru

The analytical solution of one initial value problem for the system of two ordinary differential equations describing the fracture process of metal structures in deflected mode at creep conditions is considered in the paper. Similar problems arise when calculating the strength characteristics and estimating residual deformations in the design of nuclear reactors, in building and aerospace industries and in mechanical engineering. The solvability of the creep constitutive equations’ system is of great practical importance. The possibility of obtaining an exact analytical solution makes it possible to significantly simplify both the identification of creep characteristics and the process of model examination. Necessary and sufficient integrability conditions imposed on the parameters of the model are obtained for the initial problem using Chebyshev's theorem on the integration of a binomial differential. The recommendations for the numerical solution of the considered problem are given.
Keywords: creep, long-term strength, damage parameter, binomial differential, initial problem, system of ordinary differential equations.
Mots-clés : fracture
@article{SVMO_2018_20_3_a2,
     author = {E. B. Kuznetsov and S. S. Leonov},
     title = {On the analytical solution of one creep problem},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {282--294},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a2/}
}
TY  - JOUR
AU  - E. B. Kuznetsov
AU  - S. S. Leonov
TI  - On the analytical solution of one creep problem
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 282
EP  - 294
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a2/
LA  - ru
ID  - SVMO_2018_20_3_a2
ER  - 
%0 Journal Article
%A E. B. Kuznetsov
%A S. S. Leonov
%T On the analytical solution of one creep problem
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 282-294
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a2/
%G ru
%F SVMO_2018_20_3_a2
E. B. Kuznetsov; S. S. Leonov. On the analytical solution of one creep problem. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 3, pp. 282-294. http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a2/

[1] Yu. N. Rabotnov, Creep problems in structural members, Nauka, Moscow, 2014, 752 pp. (In Russ.)

[2] N. N. Malinin, Applied theory of plasticity and creep, Mashinostroyeniye, Moscow, 1975, 400 pp. (In Russ.)

[3] A. M. Lokoshchenko, Creep and long-term strength of metals, Fizmatlit, Moscow, 2016, 504 pp. (In Russ.)

[4] A. M. Lokoshchenko, “Application of kinetic theory to the analysis of high-temperature creep rupture of metals under complex stress (review)”, J. of Applied Mechanics and Technical Physics, 53:4 (2012), 599–610

[5] A. M. Lokoshchenko, “Long-term strength of metals in complex stress state (a survey)”, Mechanics of Solids, 3 (2012), 116–136 (In Russ.)

[6] A. M. Lokoshchenko, “Results of studying creep and long-term strength of metals at the Institute of Mechanics at the Lomonosov Moscow State University (To Yu. N. Rabotnov’s Anniversary)”, J. of Applied Mechanics and Technical Physics, 55:1 (2014), 118–135 | MR

[7] L. M. Kachanov, “On the time of failure under creep conditions”, Izvestiya AN SSSR. Otdeleniye tekhnicheskikh nauk, 8 (1958), 26–31 (In Russ.) | Zbl

[8] Yu. N. Rabotnov, “On the long-term fracture mechanism”, Voprosy prochnosti materialov i konstruktsiy, AN SSSR Publ., Moscow, 1959, 5–7 (In Russ.)

[9] E. B. Kuznetsov, S. S. Leonov, “Examples of parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points”, Computational Mathematics and Mathematical Physics, 58:6 (2018), 881–897 | DOI | Zbl

[10] L. D. Kudryavtsev, Course of mathematical analysis, v. 2, Series. Differential and integral calculus of functions of several variables, Drofa, Moscow, 2003, 720 pp. (In Russ.)

[11] A. M. Lokoshchenko, S. A. Shesterikov, “Method for description of creep and long-term strength with pure elongation”, J. of Applied Mechanics and Technical Physics, 21:3 (1980), 414–417

[12] P. L. Chebyshev, “On the integration of irrational differentials”, Polnoye sobraniye sochineniy P. L. Chebysheva, v. 2, Matematicheskiy analiz, AN SSSR Publ., Moscow, 1947, 52–69 (In Russ.) | MR

[13] N. N. Vorobyev, Theory of series, Nauka, Moscow, 1979, 408 pp. (In Russ.) | MR

[14] G. M. Fikhtengolts, Course of differential and integral calculus, v. II, Fizmatlit, Moscow, 2003, 864 pp. (In Russ.)