Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_3_a0, author = {A. S. Andreev and O. A. Peregudova}, title = {On the {Lyapunov} functionals method in the stability problem of {Volterra} integro-differential equations}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {260--272}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a0/} }
TY - JOUR AU - A. S. Andreev AU - O. A. Peregudova TI - On the Lyapunov functionals method in the stability problem of Volterra integro-differential equations JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 260 EP - 272 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a0/ LA - ru ID - SVMO_2018_20_3_a0 ER -
%0 Journal Article %A A. S. Andreev %A O. A. Peregudova %T On the Lyapunov functionals method in the stability problem of Volterra integro-differential equations %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2018 %P 260-272 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a0/ %G ru %F SVMO_2018_20_3_a0
A. S. Andreev; O. A. Peregudova. On the Lyapunov functionals method in the stability problem of Volterra integro-differential equations. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 3, pp. 260-272. http://geodesic.mathdoc.fr/item/SVMO_2018_20_3_a0/
[1] V. Volterra, Theory of Functionals and Integral and Integro-Differential Equations, Dover, New York, 1959 (In Russ.)
[2] N. N. Krasovskii, Stability of Motion, Standford University Press, Standford, 1963 (In Russ.)
[3] L. Hatvani, “Marachkov type stability conditions for non-autonomous functional differential equations with unbounded right-hand sides”, Electronic Journal of Qualitive Theory of Differential Equations, 64 (2015), 1–11 | MR
[4] A. S. Andreev, “The Lyapunov functionals method in stability problems for functional differential equations”, Automation and Remote Control, 70 (2009), 1438–-1486 | Zbl
[5] T. A. Burton, Volterra Integral and Differential Equations, Mathematics in Science and Engineering, 202, 2nd ed., Elsevier B. V., Amsterdam, 2005 | MR | Zbl
[6] O. A. Peregudova, “Development of the Lyapunov function method in the stability problem for functional-differential equations”, Differential Equations, 44:12 (2008), 1701–-1710 | MR
[7] J. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977 | MR | Zbl
[8] C. Corduneanu, and V. Lakshmikantham, “Equations with unbounded delay: a survey”, Nonlinear Analysis, Theory, Methods and Applications, 4 (1980), 831–877 | DOI | MR | Zbl
[9] J. Hale, and J. Kato, “Phase space for retarded equations with infinite delay”, Fukcialaj Ekvacioj, 21 (1978), 11–41 | MR | Zbl
[10] S. Murakami, “Perturbation theorems for functional differential equations with infinite delay via limiting equations”, J. Differential Eqns., 59 (1985), 314–335 | DOI | MR | Zbl
[11] G. Makay, “On the asymptotic stability of the solutions of functional differential equations with infinite delay”, J. Differential Eqns., 108 (1994), 139–151 | DOI | MR | Zbl
[12] V. S. Sergeev, “Resonance Oscillations in Some Systems with Aftereffect”, Journal of Applied Mathematics and Mechanics, 79:5 (2015), 432–439 (In Russ.)
[13] A. S. Andreev, and O. A. Peregudova, “Stabilization of the preset motions of a holonomic mechanical system without velocity measurement”, Journal of Applied Mathematics and Mechanics, 81:2 (2017), 95–105 (In Russ.)
[14] A. Andreev, O. Peregudova, “Non-linear PI regulators in control problems for holonomic mechanical systems”, Systems Science and Control Engineering, 6:1 (2018), 12–19 | DOI
[15] A. S. Andreev, O. A. Peregudova, “Nelineynyye regulyatory v zadache o stabilizatsii polozheniya golonomnoy mekhanicheskoy sistemy”, Journal of Applied Mathematics and Mechanics, 82:2 (2018), 156–176 (In Russ.)
[16] A. S. Andreev, O. A. Peregudova, and S. Y. Rakov, “On Modeling a nonlinear integral regulator on the base of the Volterra equations”, Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva, 18:3 (2016), 8–18 (In Russ.)
[17] Z. Artstein, “Topological dynamics of an ordinary differential equation”, J. Different. Equat., 23:2 (1977), 216–223 | DOI | MR | Zbl
[18] A. S. Andreyev, O. A. Peregudova, “The Comparison Method in Asymptotic Stability Problems,”, Journal of Applied Mathematics and Mechanics, 70:6 (2006), 865–875 | MR | Zbl
[19] N. Rouche, P. Habets, M. Laloy, Stability Theory by Lyapunov’s Direct Method, Springer, New York, 1977 (In Russ.) | MR
[20] F. Chen, “Global asymptotic stability in n-species non-autonomous Lotka-Volterra competitive systems with infinite delays and feedback control”, Applied Mathematics and Computation, 170 (2005), 1452–1468 | DOI | MR | Zbl