Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_2_a8, author = {D. A. Kulikov}, title = {Stability and local bifurcations of the {Solow} model with delay}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {225--234}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a8/} }
D. A. Kulikov. Stability and local bifurcations of the Solow model with delay. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 2, pp. 225-234. http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a8/
[1] R. M. Solow, “A contribution to the theory of economic growth”, The Quarterly Journal of Economics, 70:1 (1956), 65–94 | DOI
[2] T. W. Swan, “Economic growth and capital accumulation”, Economic Record, 32:2 (1956), 334–361 | DOI
[3] W. B. Zhang, Synergetic economics: time and change in nonlinear economics, Springer-Verlag, Berlin, 1991, 246 pp. | MR | Zbl
[4] T. Puu, Nonlinear economic dynamics, Springer-Verlag, Berlin, 1997, 287 pp. | MR | Zbl
[5] M. Ferrara, L. Guerini, R. Mavilla, “Modified neoclassical growth models with delay: a critical survey and perspectives”, Applied Mathematical Sciences, 7:86 (2013), 4249-4239 | DOI | MR
[6] A. N. Kulikov, D. A. Kulikov, “The effect of delay and the economic cycles”, Taurida Journal of Computer Science Theory and Mathematics, 2(27) (2015), 87-100 (In Russ)
[7] A. N. Kulikov, D. A. Kulikov, “The mathematical model of the market and the effect of delay”, Mathematica v Yaroslavskom univ., Sbornik obsor. statey k 40-let. matem. faculteta, v. 1, 2016, 132–151 (In Russ)
[8] D. A. Kulikov, “About a mathematical model of market”, IOP Conf. Series: Journal of Physics: Conference Series, 788:1 (2017), 6
[9] J. Hale, Theory of functional differential equations, Springer-Verlag, Berlin, 1977, 365 pp. | MR | Zbl
[10] R. Bellman, L. Cooke, Differential-difference equations, Academic Press, London, 1963, 480 pp. | MR | Zbl
[11] V. L. Kharitonov, “On the determination of maximum admissible delay in a stabilization problem”, Differ. Uravn., 18:4 (1982), 723–724 | MR | Zbl
[12] A. N. Kulikov, “On smooth invariant manifolds of semigroups of nonlinear operators in a Banach space”, Issled. po Ustoichiv. i teorii kolebaniy, YarGU, 1976, 67–85 (In Russ)
[13] J.G̃uckenheimer,P. J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, Berlin, 1983, 462 pp. | MR | Zbl
[14] Yu. S. Kolesov, “Mathematical models in ecology”, Issledovaniya po ustoichivost i teorii kolebaniy, 1979, 3-40 (In Russ) | Zbl
[15] B. Carlo, L. Guerrini, “Existence of limit cycles in the Solow model with delayed-logistic population growth”, The Scientific World Journal, 2014 (2014), 8