Stability and local bifurcations of the Solow model with delay
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 2, pp. 225-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of macroeconomics, proposed by the Nobel Prize winner Solow, is considered. Its classical version has a single global attractor - a positive equilibrium state. In this paper a modification of this model with the delay effect is proposed. This leads to the need to study the dynamics of a differential equation with a deviating argument. For the corresponding equation in the paper, the question of stability and local bifurcations is studied. In particular, the possibility of subcritical bifurcations of cycles is shown. Asymptotic formulas are obtained for the corresponding periodic solutions. In the analysis of local bifurcations, such methods of the theory of dynamical systems as the method of invariant (integral) manifolds, the apparatus of the theory of normal forms of Poincare-Dulac, and asymptotic methods of analysis are used.
Keywords: model of Solou, delay differential equation, stability, cycle, asymptotic formula.
Mots-clés : bifurcation
@article{SVMO_2018_20_2_a8,
     author = {D. A. Kulikov},
     title = {Stability and local bifurcations of the {Solow} model with delay},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {225--234},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a8/}
}
TY  - JOUR
AU  - D. A. Kulikov
TI  - Stability and local bifurcations of the Solow model with delay
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 225
EP  - 234
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a8/
LA  - ru
ID  - SVMO_2018_20_2_a8
ER  - 
%0 Journal Article
%A D. A. Kulikov
%T Stability and local bifurcations of the Solow model with delay
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 225-234
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a8/
%G ru
%F SVMO_2018_20_2_a8
D. A. Kulikov. Stability and local bifurcations of the Solow model with delay. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 2, pp. 225-234. http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a8/

[1] R. M. Solow, “A contribution to the theory of economic growth”, The Quarterly Journal of Economics, 70:1 (1956), 65–94 | DOI

[2] T. W. Swan, “Economic growth and capital accumulation”, Economic Record, 32:2 (1956), 334–361 | DOI

[3] W. B. Zhang, Synergetic economics: time and change in nonlinear economics, Springer-Verlag, Berlin, 1991, 246 pp. | MR | Zbl

[4] T. Puu, Nonlinear economic dynamics, Springer-Verlag, Berlin, 1997, 287 pp. | MR | Zbl

[5] M. Ferrara, L. Guerini, R. Mavilla, “Modified neoclassical growth models with delay: a critical survey and perspectives”, Applied Mathematical Sciences, 7:86 (2013), 4249-4239 | DOI | MR

[6] A. N. Kulikov, D. A. Kulikov, “The effect of delay and the economic cycles”, Taurida Journal of Computer Science Theory and Mathematics, 2(27) (2015), 87-100 (In Russ)

[7] A. N. Kulikov, D. A. Kulikov, “The mathematical model of the market and the effect of delay”, Mathematica v Yaroslavskom univ., Sbornik obsor. statey k 40-let. matem. faculteta, v. 1, 2016, 132–151 (In Russ)

[8] D. A. Kulikov, “About a mathematical model of market”, IOP Conf. Series: Journal of Physics: Conference Series, 788:1 (2017), 6

[9] J. Hale, Theory of functional differential equations, Springer-Verlag, Berlin, 1977, 365 pp. | MR | Zbl

[10] R. Bellman, L. Cooke, Differential-difference equations, Academic Press, London, 1963, 480 pp. | MR | Zbl

[11] V. L. Kharitonov, “On the determination of maximum admissible delay in a stabilization problem”, Differ. Uravn., 18:4 (1982), 723–724 | MR | Zbl

[12] A. N. Kulikov, “On smooth invariant manifolds of semigroups of nonlinear operators in a Banach space”, Issled. po Ustoichiv. i teorii kolebaniy, YarGU, 1976, 67–85 (In Russ)

[13] J.G̃uckenheimer,P. J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, Berlin, 1983, 462 pp. | MR | Zbl

[14] Yu. S. Kolesov, “Mathematical models in ecology”, Issledovaniya po ustoichivost i teorii kolebaniy, 1979, 3-40 (In Russ) | Zbl

[15] B. Carlo, L. Guerrini, “Existence of limit cycles in the Solow model with delayed-logistic population growth”, The Scientific World Journal, 2014 (2014), 8