Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_2_a4, author = {A. O. Kazakov and A. D. Kozlov}, title = {The asymmetric {Lorenz} attractor as an example of a new pseudohyperbolic attractor of three-dimensional systems}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {187--198}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a4/} }
TY - JOUR AU - A. O. Kazakov AU - A. D. Kozlov TI - The asymmetric Lorenz attractor as an example of a new pseudohyperbolic attractor of three-dimensional systems JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 187 EP - 198 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a4/ LA - ru ID - SVMO_2018_20_2_a4 ER -
%0 Journal Article %A A. O. Kazakov %A A. D. Kozlov %T The asymmetric Lorenz attractor as an example of a new pseudohyperbolic attractor of three-dimensional systems %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2018 %P 187-198 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a4/ %G ru %F SVMO_2018_20_2_a4
A. O. Kazakov; A. D. Kozlov. The asymmetric Lorenz attractor as an example of a new pseudohyperbolic attractor of three-dimensional systems. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 2, pp. 187-198. http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a4/
[1] Aframovich V. S., Shilnikov L. P., “Strange attractors and quasiattractors”, Nonlinear Dynamics and Turbulence, Pitmen, Boston, 1983 | MR
[2] D.V. Turaev, L.P. Shilnikov, “An example of a wild strange attractor”, Sb. Math., 189:2 (1998), 291–314 (In Russ.) | DOI | Zbl
[3] D.V. Turaev, L.P. Shilnikov, “Pseudo-hyperbolisity and the problem on periodic perturbations of Lorenz-like attractors”, Doklady Mathematics, 77:1 (2008), 17–21 (In Russ.) | Zbl
[4] S. V Gonchenko , I. I Ovsyannikov , C Simo, D Turaev, “Three-dimensional Henon-like maps and wild Lorenz-like attractors”, Int. J. Bifurcation Chaos, 15:11 (2005), 3493–3508 | DOI | MR | Zbl
[5] A.S. Gonchenko, S.V. Gonchenko, L.P. Shilnikov, “Towards scenarios of chaos appearance in three-dimensional maps”, Rus. J. Nonlin. Dyn., 8:1 (2012), 3–28 (In Russ.)
[6] A.S. Gonchenko, S.V. Gonchenko, A.O. Kazakov, D. Turaev, “Simple scenarios of onset of chaos in three-dimensional maps”, Int. J. Bif. and Chaos, 24:8 (2014), 25 pp. | DOI | MR
[7] S.V. Gonchenko, A.O.Kazakov, D.Turaev, Wild spiral attractors in a four-dimensional Lorenz model, to appear
[8] A. L. Shilnikov, L. P. Shilnikov, “On the nonsymmetrical Lorenz model”, Int. J. Bifurcation Chaos, 1:4 (1991), 773–776 | DOI | MR | Zbl
[9] A. Gonchenko, S. Gonchenko, “Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps”, Physica D, 337 (2016), 43–57 | DOI | MR | Zbl
[10] V. Z. Grines , Y. V. Zhuzhoma, O. V.Pochinka, “Rough diffeomorphisms with basic sets of codimension one”, Journal of Mathematical Sciences, 225 (2017), 195–219 | DOI | MR | Zbl
[11] S.P. Kuznetsov, Dynamical Chaos and hyperbolic attractors: from mathematics to physics, Institute of Computer Studying, M.-Izhevsk, 2013, 488 pp. (In Russ.)
[12] E. N. Lorenz, “Deterministic nonperiodic flow”, Journal of the Atmospheric Sciences, 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[13] V.S. Afraimovich , V.V. Bykov, L.P. Shilnikov, “The origin and structure of the Lorenz attractor”, Sov. Phys. Dokl., 234:2 (1977), 336–339 (In Russ.) | MR
[14] W.Tucker, “The Lorenz attractor exists”, Comptes Rendus de l'Academie des Sciences-Series I-Mathematics, 328:12 (1999), 1197-1202 | MR | Zbl
[15] S. Gonchenko, I.Ovsyannikov, C.Simo, D.Turaev, “Three-dimensional Henon-like maps and wild Lorenz-like attractors”, Int. J. of Bifurcation and chaos, 15:11 (2005), 3493–3508 | DOI | MR | Zbl
[16] S.V. Gonchenko, A.S.Gonchenko, A.O.Kazakov, “Richness of chaotic dynamics in nonholonomic models of a Celtic stone”, Regular and Chaotic Dynamics, 8:5 (2013), 521–538 | DOI | MR
[17] L. Chua, M. Komuro, T. Matsumoto, “The double scroll family”, IEEE transactions on circuits and systems, 33:11 (1986), 1072–1118 | DOI | MR | Zbl
[18] L.P. Shilnikov, “The theory of bifurcations and turbulence”, Methods of qualitative theory of differential equations, Mezhvuz. sb., eds. E. A. Leontovich, GGU, Gorkiy, 1986, 150–163 (In Russ.)
[19] L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, L.O. Chua, Methods Of qualitative theory in nonlinear dynamics, World Sci, Singapore–New Jersey–London–Hong Kong, 2001
[20] D. Turaev, L. P. Shilnikov, “On bifurcations of the homoclinic «figure eight» for a saddle with a negative saddle value”, Sov. Math. Dokl., 34 (1987), 397–401 | MR