Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_2_a3, author = {U. P. Zaranik and S. E. Kuptsova and N. A. Stepenko}, title = {Sufficient conditions for the existence of an asymptotic quiescent position in time-delay systems}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {175--186}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a3/} }
TY - JOUR AU - U. P. Zaranik AU - S. E. Kuptsova AU - N. A. Stepenko TI - Sufficient conditions for the existence of an asymptotic quiescent position in time-delay systems JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 175 EP - 186 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a3/ LA - ru ID - SVMO_2018_20_2_a3 ER -
%0 Journal Article %A U. P. Zaranik %A S. E. Kuptsova %A N. A. Stepenko %T Sufficient conditions for the existence of an asymptotic quiescent position in time-delay systems %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2018 %P 175-186 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a3/ %G ru %F SVMO_2018_20_2_a3
U. P. Zaranik; S. E. Kuptsova; N. A. Stepenko. Sufficient conditions for the existence of an asymptotic quiescent position in time-delay systems. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 2, pp. 175-186. http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a3/
[1] N. N. Krasovskiy, Some problems of the theory of stability of motions, State Publ.of phys. and math. literature, Moscow, 1959, 221 pp. (In Russ.)
[2] R. Bellman, K. L. Cooke, Differencial-Difference Equations, Mir Publ., Moscow, 1967, 548 pp. (In Russ.) | MR
[3] J. Hale, Theory of functional differential equations, Mir Publ., Moscow, 1980, 300 pp. (In Russ.)
[4] V. I. Zubov, Lectures on theory of control, Nauka Publ., Moscow, 1975, 496 pp. (In Russ.)
[5] V. I. Zubov, “To the theory of linear time-delay systems”, Proc. of Higher Educational Institutions. Mathematics, 6 (1958), 86-95 (In Russ.) | Zbl
[6] V. I. Zubov, Oscillations and waves, Leningrad. State University Publ., Leningrad, 1989, 416 pp. (In Russ.)
[7] S. E. Kuptsova, “An asymptotically invariant sets”, Control Processes and Stability, Proceedings of the 37th Intern. scientific conf. graduate and undergraduate students, eds. A. V. Platonov, N. V. Smirnov, SPbGU Publ., St. Petersburg, 2006, 50-56 (In Russ.)
[8] S. E. Kuptsova, “On the asymptotic behavior of solutions of systems of nonlinear nonstationary differential equations”, Trudy Srednevolzhskogo matematicheskogo obshchestva, 8:1 (2006), 235-243 (In Russ.) | MR
[9] O. G. Tikhomirov, E. V. Temkina, “Asymptotic quiescent position for systems of homogeneous non-autonomous differential equations”, Vestnik SPbGU. Series 10. Applied mathematics, computer science and control processes, 2014, no. 2, 58-65 (In Russ.)
[10] A. V. Ekimov, M. V. Svirkin, “Analysis of asymptotic equilibrium state of differential systems using Lyapunov function method”, International conference “Stability and control processes”, in memory of V. I. Zubov (2015), 45-47
[11] S. E. Kuptsova, “Asymptotic quiescent positions in systems of difference equations”, Sistemy upravleniia i informatsionnye tekhnologii, 56:2 (2014), 67-71 (In Russ.)
[12] S. Yu. Kuptsov, S. E. Kuptsova, U. P. Zaranik, “On asymptotic quiescent position of nonlinear difference systems with perturbations”, International conference “Stability and control processes”, in memory of V. I. Zubov (2015), 20-22
[13] B. S. Razumikhin, “On the stability of systems with a delay”, Prikladnaya matematika i mekhanika, 20:4 (1956), 500-512 (In Russ.)
[14] B. S. Razumikhin, “Application of Lyapunov’s method to problems in the stability of systems with a delay”, Automatika i telemekhanika, 21:6 (1960), 740-749 (In Russ.) | MR | Zbl
[15] V. L. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices, Birkhäuser, Basel, 2013, 311 pp. | MR