Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_2_a2, author = {V. Z. Grines and E. D. Kurenkov}, title = {Representation of spaciously situated perfect attractors of diffeomorphisms by geodesic laminations}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {159--174}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a2/} }
TY - JOUR AU - V. Z. Grines AU - E. D. Kurenkov TI - Representation of spaciously situated perfect attractors of diffeomorphisms by geodesic laminations JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 159 EP - 174 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a2/ LA - ru ID - SVMO_2018_20_2_a2 ER -
%0 Journal Article %A V. Z. Grines %A E. D. Kurenkov %T Representation of spaciously situated perfect attractors of diffeomorphisms by geodesic laminations %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2018 %P 159-174 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a2/ %G ru %F SVMO_2018_20_2_a2
V. Z. Grines; E. D. Kurenkov. Representation of spaciously situated perfect attractors of diffeomorphisms by geodesic laminations. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 2, pp. 159-174. http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a2/
[1] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747-817 | DOI | MR | Zbl
[2] R. V. Plykin, “The topology of basic sets for Smale diffeomorphisms”, Mat. Sb., 84(126):2 (1971), 301-312 (In Russ.) | MR | Zbl
[3] R. V. Plykin, “Sources and sink of A-diffeomorphisms of surfaces”, Mat. Sb., 94(136):2(6) (1974), 243-264 (In Russ.) | MR
[4] R. V. Plykin, “On the geometry of hyperbolic attractors of smooth cascades”, Russian Mathematical Surveys, 39:6 (1984), 75-113 (In Russ.) | MR | Zbl
[5] A. Yu. Zhirov, R. V. Plykin, “On the relationship between onedimensional hyperbolic attractors of surfaces diffeomorphisms and generalized pseudo-anosov diffeomorphisms”, Mathematica Notes, 58:1 (1995), 779-781 (In Russ.) | MR | Zbl
[6] S. H. Aranson, V. Z. Grines, “On some invariants of dynamical systems on two-dimensional manifolds (necessary and sufficient conditions sorthe of topological equivalence of transitive dynamical systems)”, Matem. Sbornik, 90:3 (1973(132)), 372-402 (In Russ.) | MR | Zbl
[7] V. Z. Grines, “On topological conjugacy of diffeomorphisms of 2-manifolds on onedimensional orientable basic sets I”, Trudy Moskovskogo matematicheskogo obshchestva, 32, 1975, 35–60 (In Russ.) | Zbl
[8] V. Z. Grines, “On topological conjugacy of diffeomorphisms of 2-manifolds on onedimensional orientable basic sets II”, Trudy Moskovskogo matematicheskogo obshchestva, 34, 1977, 243-252 (In Russ.) | Zbl
[9] S. H. Aranson, V. Z. Grines, “On the representation of minimal sets of currents on two-dimensional manifolds by geodesic”, Mathematic of the USSR- Isvestiya, 42:1 (1978), 104-129 (In Russ.) | MR | Zbl
[10] V. Z. Grines, “On the topological classification of structurally stable diffeomorphisms of surfaces with onedimensional attractors and repellers”, Sb. Math., 188:4 (1997), 57-94 (In Russ.) | DOI | MR | Zbl
[11] V. Z. Grines, “Topological classification of one-dimensional attractors and repellers of A-diffeomorphisms of surfaces by means of automorphisms of fundamental groups of supports”, J. Math. Sci., 95:5 (1999), 2523-2545 | DOI | MR | Zbl
[12] V. Z. Grines, “On topological classification of A-diffeomorphisms of surfaces”, Journal of Dynamical and Control Systems, 6:1 (2000), 97-126 | DOI | MR | Zbl
[13] J. Nielsen, “Untersuchungen zur Topologie der geschlossenen zweiseitigen Flachen”, Acta Math., 50:1 (1927), 189-358 | DOI | MR | Zbl
[14] V. Z. Grines, O. V. Pochinka, Introduction to topological classification of cascades on manifolds of dimension two and three, Regulyar. Khaotich. Dinam., Moscow–Izhevsk, 2011 (In Russ.)
[15] A. J. Casson, S. A. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, Cambridge University Press, 1998
[16] R. Bowen, “Periodic points and measures for Axiom A diffeomorphisms”, Trans. Amer. Math. Soc., 154 (1971), 377-397 | MR | Zbl