Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_2_a1, author = {A. M. Akhtyamov and I. {\CYRM}. Utyashev}, title = {Restoration of the polynomial potential in the {Sturm-Liouville} problem}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {148--158}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a1/} }
TY - JOUR AU - A. M. Akhtyamov AU - I. М. Utyashev TI - Restoration of the polynomial potential in the Sturm-Liouville problem JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 148 EP - 158 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a1/ LA - ru ID - SVMO_2018_20_2_a1 ER -
%0 Journal Article %A A. M. Akhtyamov %A I. М. Utyashev %T Restoration of the polynomial potential in the Sturm-Liouville problem %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2018 %P 148-158 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a1/ %G ru %F SVMO_2018_20_2_a1
A. M. Akhtyamov; I. М. Utyashev. Restoration of the polynomial potential in the Sturm-Liouville problem. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 2, pp. 148-158. http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a1/
[1] W. A. Ambarzumijan, “Uber eine Frage der Eigenwerttheorie”, Zeitshrift fur Physik, 1929, no. 53, 690–695 | DOI
[2] G. Borg, “Eine Umkehrung der Sturm– Liouvilleschen Eigenwert Aufgabe. Bestimmung der Differentialgleichung durch die Eigenwarte”, Acta Math, 78:1 (1946), 1–96 | DOI | MR | Zbl
[3] N. Levinson, “The inverse Sturm-Liouville problem”, Math. Tidsskr., 3 (1949), 25–30 | MR
[4] V. A. Marchenko, Operators of Sturm-Liouville and their applications, Naukova dumka, Kiev, 1977, 329 pp. (In Russ.) | MR
[5] B. M. Levitan, Inverse Sturm-Liouville problems and their applications, Nauka Publ., Moscow, 1984, 240 pp. (In Russ.)
[6] A. M. Savchuk, A. A. Shkalikov, “Inverse problems for Sturm-Liouville operators with potentials in Sobolev spaces: Uniform stability”, Functional Analysis and Its Applications, 44:4 (2010), 34–53 (In Russ.) | DOI | MR | Zbl
[7] V. A. Yurko, Introduction to the theory of inverse spectral problems, Fizmatlit Publ., Moscow, 2007, 384 pp. (In Russ.)
[8] I. M. Guseinov, I. M. Nabiev, “The inverse spectral problem for pencils of differential operators”, Mathematics Sbornik, 198:11 (2007), 1579–1598 (In Russ.) | DOI | MR | Zbl
[9] I. M. Nabiev, “The inverse quasiperiodic problem for a diffusion operator”, Doklady Mathematics, 76:1 (2007), 527–529 | MR | Zbl
[10] V. A. Sadovnichii, “The uniqueness of the solution of the inverse problem in the case of a second-order equation with non-decomposable conditions, the regularized sums of a part of the eigenvalues. Factorization of the characteristic determinant”, Soviet Mathematics, 206:2 (1972), 293–296 (In Russ.) | Zbl
[11] V. A. Sadovnichii, Ya. T. Sultanaev, A. M. Akhtyamov, “General inverse Sturm-Liouville problem with symmetric potential”, Azerbaijan Journal of Mathematics, 5:2 (2015), 96-108 | MR | Zbl
[12] M. G. Gasymov, I. M. Guseynov, I. M. Nabiev, “The inverse problem for the Sturm-Liouville operator with non-separated self-adjoint boundary conditions”, Sibirskiy Matematicheskiy zhurnal, 31:6 (1991), 46–54 (In Russ.)
[13] E. L. Korotyaev, D. S. Chelkak, “The inverse Sturm-Liouville problem with mixed boundary conditions”, St. Peterburg Math., 21:5 (2010), 761–778
[14] Kh. R. Mamedov, F. Cetinkaya, “Inverse problem for a class of Sturm-Liouville operator with spectral parameter in boundary condition”, Bound. Value Probl., 2013, 16 pp. http://link.springer.com/journal/volumesAndIssues/13661 | MR | Zbl
[15] E. S. Panakhov, H. Koyunbakan, Ic. Unal, “Reconstruction formula for the potential function of Sturm–Liouville problem with eigenparameter boundary condition”, Inverse Problems in Science and Engineering, 18:1 (2010), 173–180 | DOI | MR | Zbl
[16] A. M. Akhtyamov, A. V. Mouftakhov, “Identification of boundary conditions using natural frequencies”, Inverse Problems in Science and Engineering, 12:4 (2004), 393-408 | DOI | MR
[17] A. M. Akhtyamov, I. M. Utyashev, “Identification of the boundary conditions at both ends of the string according to the natural frequencies of the oscillations”, Akusticheskiy zhurnal, 61:6 (2015), 647-655 (In Russ.) | DOI
[18] I. M. Utyashev, A. M. Akhtyamov, “Identification of the string boundary conditions using natural frequencies”, Trudy Instituta mekhaniki im. R. R. Mavlyutova, 11:1 (2016), 38–52 (In Russ.)
[19] A. Kollatts, Tasks for eigenvalues (with technical applications), Nauka Publ., Moscow, 1968, 504 pp. (In Russ.)
[20] M. A. Naymark, Linear differential operators, Nauka Publ., Moscow, 1969, 526 pp. (In Russ.) | MR