Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_2_a0, author = {S. N. Alekseenko and L. E. Platonova}, title = {A first-order partial differential equation of the common type with different ways of initial data}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {132--147}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a0/} }
TY - JOUR AU - S. N. Alekseenko AU - L. E. Platonova TI - A first-order partial differential equation of the common type with different ways of initial data JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 132 EP - 147 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a0/ LA - ru ID - SVMO_2018_20_2_a0 ER -
%0 Journal Article %A S. N. Alekseenko %A L. E. Platonova %T A first-order partial differential equation of the common type with different ways of initial data %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2018 %P 132-147 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a0/ %G ru %F SVMO_2018_20_2_a0
S. N. Alekseenko; L. E. Platonova. A first-order partial differential equation of the common type with different ways of initial data. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 2, pp. 132-147. http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a0/
[1] S. N. Alekseenko, L. E. Platonova, “The construction of the basic resolution of the system of integral equations for quasi-linear partial differential equations of the first order in the case of parametric setting initial data”, Matematicheskiy vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 13 (2011), 61–70 (In Russ.)
[2] S. N. Alekseenko, L. E. Platonova, “Proof of local solvability of the resolvent of a system of integral equations corresponding to quasi-linear equations of the first order in the case of parametric setting initial data”, Matematicheskiy vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 14 (2012), 41–51 (In Russ.)
[3] M. I. Imanaliev, S. N. Alekseenko, “The terms of expedience of application of the method of additional argument to a quasilinear differential equations of the first order equations general form”, Asimptoticheskiye topologicheskiye i kompyuternye metody v matematike (Bishkek, KGNU), Vestnik KGNU, Ser. 3 Estestv. i tekhn. nauki, Matem.nauki. Inform. i inf. tekhnologii, 6, 2001, 6–7 (In Russ.)
[4] S. N. Alekseenko, “Application of the method of an additional argument to the study of the solvability of the “uniaxial” Cauchy problem for quasilinear partial differential equations of the first order”, Matematicheskiy vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 11 (2009), 40–49 (In Russ.)
[5] M. I. Imanaliev, S. N. Alekseenko, “On the theory of nonlinear equations with a differential operator of the type of the total time derivative”, Doklady RAN, 329:5 (1993), 543–546 (In Russ.) | Zbl
[6] S. N. Alekseenko, “Proof of the convergence of successive approximations constructed using the method of an additional argument in the “uniaxial” Cauchy problem for quasilinear partial differential equations of the first order”, Matematicheskiy vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 12 (2010), 51–57 (In Russ.)
[7] M. I. Imanaliev, P. S. Pankov, S. N. Alekseenko, “Additional argument method”, Vestnik KazNU. Seriya matematika, mekhanika, informatika, 1, Spetsial'nyy vypusk (2006), 60–64, Almaty (In Russ.)
[8] M. I. Imanaliev, S. N. Alekseenko, “On the existence of a smooth bounded solution for a system of two nonlinear partial differential equations of the first order”, Dokl. RAN, 379:1 (2001), 16–21 (In Russ.) | MR | Zbl
[9] M. I. Imanaliev, S. N. Alekseenko, “On the theory of non-linear integro-differential partial differential equations of Whitham type”, Dokl. AN, 323:3 (1992), 410–424 (In Russ.)
[10] M. I. Imanaliev, Nonlinear integro-differential equations with partial derivatives, Ilim, Bishkek, 1992, 111 pp. (In Russ.)
[11] S. N. Alekseenko, L. E. Platonova, “A first-order partial differential equation of the common type with initial data in Cartesian coordinates on an infinite length line”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 14:3 (2012), 21–28 (In Russ.) | MR
[12] S. N. Alekseenko, L. E. Platonova, “The proof of a local solvability theorem for a quasi-linear first-order partial differential equation of the common type with initial data in Cartesian coordinates on an infinite length line”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 15:2 (2013), 27–37 (In Russ.) | MR | Zbl