A first-order partial differential equation of the common type with different ways of initial data
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 2, pp. 132-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem for a quasi-linear first order partial differential equation is studied for different cases of initial data. In the first case, the line carrying the initial data is specified parametrically; in the second case, this line is described in Cartesian coordinates and has an infinite length; in the third case, the line is specified in Cartesian coordinates and its length is finite. In each case, the local resolvability conditions are formulated for the considered quasi-linear equation and it is shown that the solution has the same smoothness as the function defining the initial conditions. To study the above problems the method of additional argument was used. Using this method, some system of integral equations is solved, and the solution of this system gives the solution of the Cauchy problem for the original equation.
Keywords: quasi-linear first order partial differential equation, Cauchy problem, method of an additional argument, local resolvability, integral equation.
@article{SVMO_2018_20_2_a0,
     author = {S. N. Alekseenko and L. E. Platonova},
     title = {A first-order partial differential equation of the common type with  different ways of initial data},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {132--147},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a0/}
}
TY  - JOUR
AU  - S. N. Alekseenko
AU  - L. E. Platonova
TI  - A first-order partial differential equation of the common type with  different ways of initial data
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 132
EP  - 147
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a0/
LA  - ru
ID  - SVMO_2018_20_2_a0
ER  - 
%0 Journal Article
%A S. N. Alekseenko
%A L. E. Platonova
%T A first-order partial differential equation of the common type with  different ways of initial data
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 132-147
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a0/
%G ru
%F SVMO_2018_20_2_a0
S. N. Alekseenko; L. E. Platonova. A first-order partial differential equation of the common type with  different ways of initial data. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 2, pp. 132-147. http://geodesic.mathdoc.fr/item/SVMO_2018_20_2_a0/

[1] S. N. Alekseenko, L. E. Platonova, “The construction of the basic resolution of the system of integral equations for quasi-linear partial differential equations of the first order in the case of parametric setting initial data”, Matematicheskiy vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 13 (2011), 61–70 (In Russ.)

[2] S. N. Alekseenko, L. E. Platonova, “Proof of local solvability of the resolvent of a system of integral equations corresponding to quasi-linear equations of the first order in the case of parametric setting initial data”, Matematicheskiy vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 14 (2012), 41–51 (In Russ.)

[3] M. I. Imanaliev, S. N. Alekseenko, “The terms of expedience of application of the method of additional argument to a quasilinear differential equations of the first order equations general form”, Asimptoticheskiye topologicheskiye i kompyuternye metody v matematike (Bishkek, KGNU), Vestnik KGNU, Ser. 3 Estestv. i tekhn. nauki, Matem.nauki. Inform. i inf. tekhnologii, 6, 2001, 6–7 (In Russ.)

[4] S. N. Alekseenko, “Application of the method of an additional argument to the study of the solvability of the “uniaxial” Cauchy problem for quasilinear partial differential equations of the first order”, Matematicheskiy vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 11 (2009), 40–49 (In Russ.)

[5] M. I. Imanaliev, S. N. Alekseenko, “On the theory of nonlinear equations with a differential operator of the type of the total time derivative”, Doklady RAN, 329:5 (1993), 543–546 (In Russ.) | Zbl

[6] S. N. Alekseenko, “Proof of the convergence of successive approximations constructed using the method of an additional argument in the “uniaxial” Cauchy problem for quasilinear partial differential equations of the first order”, Matematicheskiy vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 12 (2010), 51–57 (In Russ.)

[7] M. I. Imanaliev, P. S. Pankov, S. N. Alekseenko, “Additional argument method”, Vestnik KazNU. Seriya matematika, mekhanika, informatika, 1, Spetsial'nyy vypusk (2006), 60–64, Almaty (In Russ.)

[8] M. I. Imanaliev, S. N. Alekseenko, “On the existence of a smooth bounded solution for a system of two nonlinear partial differential equations of the first order”, Dokl. RAN, 379:1 (2001), 16–21 (In Russ.) | MR | Zbl

[9] M. I. Imanaliev, S. N. Alekseenko, “On the theory of non-linear integro-differential partial differential equations of Whitham type”, Dokl. AN, 323:3 (1992), 410–424 (In Russ.)

[10] M. I. Imanaliev, Nonlinear integro-differential equations with partial derivatives, Ilim, Bishkek, 1992, 111 pp. (In Russ.)

[11] S. N. Alekseenko, L. E. Platonova, “A first-order partial differential equation of the common type with initial data in Cartesian coordinates on an infinite length line”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 14:3 (2012), 21–28 (In Russ.) | MR

[12] S. N. Alekseenko, L. E. Platonova, “The proof of a local solvability theorem for a quasi-linear first-order partial differential equation of the common type with initial data in Cartesian coordinates on an infinite length line”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 15:2 (2013), 27–37 (In Russ.) | MR | Zbl