Numerical modeling of the process of penetration of an external magnetic field into a thick disk-shaped of a high-temperature superconductors on the basis of the random walk algorithm
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 88-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a mathematical modeling of the process of penetration of an external magnetic field into a thick disk-shaped sample of high-temperature superconductor (HTSC) in a critical state is performed. The problem is reduced to finding the minimum of the objective function that includes integral equations of the first kind. At the same time, volume of the disk is occupied by the shielding superconducting current (overcurrent). Disk is separated by a curved conical surface with shape that is determined by a random walk in the disk ${(r, z)}$ plane. The result of the development of the program in language C# is given; this program calculates the optimal configuration of the overcurrent volume in HTSC using the random walk algorithm. The results of the computational experiment based on Bean's model for cases when an external magnetic field in the $z=0$ plane penetrates in a superconducting disk to the depth of 20, 50 and 80 % of the disk radius, are given. The results of the program's work for the grid of 50x50 in the plane ${(r, z)}$ of the quarter of the disk section are presented. Processing and visualization of obtained numerical data were carried out using OriginLab and MS Excel.
Keywords: type-II superconductor, high-temperature superconductor, critical state, shielding overcurrent, Bean's model,integral equations of the first kind, objective function, random walk algorithm.
@article{SVMO_2018_20_1_a8,
     author = {N. D. Kuzmichev and I. V. Buryanov and M. A. Vasyutin and A. Yu. Shitov},
     title = {Numerical modeling of the process of penetration of an external magnetic field into a thick disk-shaped of a high-temperature superconductors on the basis of the random walk algorithm},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {88--95},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a8/}
}
TY  - JOUR
AU  - N. D. Kuzmichev
AU  - I. V. Buryanov
AU  - M. A. Vasyutin
AU  - A. Yu. Shitov
TI  - Numerical modeling of the process of penetration of an external magnetic field into a thick disk-shaped of a high-temperature superconductors on the basis of the random walk algorithm
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 88
EP  - 95
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a8/
LA  - ru
ID  - SVMO_2018_20_1_a8
ER  - 
%0 Journal Article
%A N. D. Kuzmichev
%A I. V. Buryanov
%A M. A. Vasyutin
%A A. Yu. Shitov
%T Numerical modeling of the process of penetration of an external magnetic field into a thick disk-shaped of a high-temperature superconductors on the basis of the random walk algorithm
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 88-95
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a8/
%G ru
%F SVMO_2018_20_1_a8
N. D. Kuzmichev; I. V. Buryanov; M. A. Vasyutin; A. Yu. Shitov. Numerical modeling of the process of penetration of an external magnetic field into a thick disk-shaped of a high-temperature superconductors on the basis of the random walk algorithm. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 88-95. http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a8/

[1] C. P. Bean, “Magnetization of hard superconductors”, Phys. Rev. Lett., 8 (1962), 250 – 251 | DOI

[2] Y. B. Kim, C. F. Heampstead, A. R. Strnad, “Critical persistent currents in hard superconductors”, Phys. Rev. Lett., 9:7 (1962), 306 – 309 | DOI

[3] E. H. Brandt, “Superconductor disks and cylinders in axial magnetic field. II. Nonlinear and linear ac susceptibilities”, Phys. Rev. B., 58:10 (1998), 6506 – 6522 | DOI

[4] N. D. Kuzmichev, A. A. Fedchenko, “The magnetization in hard type-II superconductors of short cylinders and a map of the distribution of the shielding current in the Bean's model”, JTF Publ., 82:5 (2012), 1 – 5 (In Russ.)

[5] N. D. Kuzmichev, I. V. Buryanov, “Mathematical modeling and development of a program for calculating the magnetic properties in cylinder-shapes of type-II superconductors”, Proceeding of the XI All-Russian Scientific Conference of the «Mechanical engineering: science, technology, education», 2017, 270 – 278 (In Russ.)

[6] N. D. Kuzmichev, A. A. Fedchenko, “Mathematical modeling of the nonlinear response of a short cylinder-shape a hard superconductor”, Proceedings of Higher Educational Institutions. The Volga region. Physics and mathematics, 19:3 (2011), 110 – 119 (In Russ.)

[7] N. D. Kuzmichev, A. A. Fedchenko, “Numerical simulation of the magnetization harmonics of a disk from a type-II hard superconductor in the field shielding approximation at the center of the sample”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 13:1 (2011), 55 – 62 (In Russ.)

[8] N. D. Kuzmichev, A. A. Fedchenko, “Mathematical modeling of the magnetization process of a cylindrical superconductor in the Bean's model”, Proceedings of Higher Educational Institutions. The Volga region. Physics and mathematics, 21:1 (2012), 139 – 148 (In Russ.)

[9] N. D. Kuzmichev, A. A. Fedchenko, “Mathematical modeling of the shielding current distribution and hysteresis of the magnetization of short cylinders of type-II hard superconductors in the Bean's approximation”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 13:4 (2011), 25 – 34 (In Russ.)