Kinetic equation for simulation of non-stationary non-equidistant time-series
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 78-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain kinetic equation for the sample distribution function of the time series with values generated by non-stationary flow of events. In many practically observed time series unsteadiness is due to random switching from one random process to another. In these cases the attachments are filtered; it allows to select a stationary component of series. A model is proposed to describe the evolution of pollution levels in the city. In this model a sequence of time intervals between random events, which are the moments of pollutants' emission into the atmosphere, forms a non-stationary time series. Software package for calculating statistics that determine the evolution of the sampling distribution at a certain time interval is described. The conversion of these statistics from sample size to the time interval is implemented. The equation of their distributions' evolution in terms of empirical Liouville equation is obtained.
Keywords: sample distribution function, non-equidistant time series, non-stationary flow of events.
Mots-clés : Liouville equation
@article{SVMO_2018_20_1_a7,
     author = {L. V. Klochkova and Yu. N. Orlov and R. V. Pleshakov},
     title = {Kinetic equation for simulation of non-stationary non-equidistant time-series},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {78--87},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a7/}
}
TY  - JOUR
AU  - L. V. Klochkova
AU  - Yu. N. Orlov
AU  - R. V. Pleshakov
TI  - Kinetic equation for simulation of non-stationary non-equidistant time-series
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 78
EP  - 87
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a7/
LA  - ru
ID  - SVMO_2018_20_1_a7
ER  - 
%0 Journal Article
%A L. V. Klochkova
%A Yu. N. Orlov
%A R. V. Pleshakov
%T Kinetic equation for simulation of non-stationary non-equidistant time-series
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 78-87
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a7/
%G ru
%F SVMO_2018_20_1_a7
L. V. Klochkova; Yu. N. Orlov; R. V. Pleshakov. Kinetic equation for simulation of non-stationary non-equidistant time-series. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 78-87. http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a7/

[1] Yu. N. Orlov, K. P. Osminin, “Construction of the sample distribution function for non-stationary time-series forecasting”, Matematicheskoye modelirovaniye, 20:9 (2008), 23–33 (In Russ.) | MR | Zbl

[2] Yu. N. Orlov, K. P. Osminin, Non-stationary time-series: forecasting methods with examples of financial and goods markets analysis, Editorial URSS, M., 2011, 384 pp. (In Russ.)

[3] Yu. N. Orlov, S. L. Fedorov, “Functional modeling and its statistical analysis over the samples of the non-stationary time-series”, Preprints of Keldysh Institute of Applied Mathematics, 2014, 43, 26 pp. (In Russ.)

[4] Yu. N. Orlov, Kinetic method of the investigation of non-stationary time-series, MIRT, M., 2014, 276 pp. (In Russ.)

[5] Yu. N. Orlov, S. L. Fedorov, Numerical simulation methods for non-stationary random processes, MIPT, M., 2016, 112 pp. (In Russ.)

[6] L. V. Klochkova, Yu. N. Orlov, V. F. Tishkin, “Mathematical modeling of the correlation between air and epidemiology situation in megapolis”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 14:1 (2012), 8–15 (In Russ.) | Zbl

[7] D. A. Zenyuk, L. V. Klochkova, Yu. N. Orlov, “Modeling of non-stationary random processes with help kineticheskii equations with fractional derivatives”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 18:2 (2016), 125–133 (In Russ.)

[8] L. V. Klochkova, Yu. N. Orlov, S. L. Fedorov, “Modeling of a non-stationary ensemble of trajectories using the Fokker-Planck equation”, Zhurnal Srednevolzhskogo matematicheskogo obschestva, 18:1 (2016), 126–134 (In Russ.) | Zbl

[9] D. S. Kirillov, O. V. Korob, N. A. Mitin, Yu. N. Orlov, R. V. Pleshakov, “Hurst exponent distributions for non-stationary marked time-series”, Preprints of Keldysh Institute of Applied Mathematics, 2013, 11, 16 pp. (In Russ.)