Mathematical modeling of transport processes in a~cylindrical channel
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 64-77

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the kinetic approach, a solution of heat and mass transfer problems in a long cylindrical channel is found using a mirror-diffuse model of the Maxwell boundary condition. The Williams equation is used as the main equation describing the kinetics of the process, assuming that a constant longitudinal temperature gradient is maintained in the channel. The Williams equation is written in the Cartesian coordinate system. The solution of the linearized problem of nonisothermal flow of the rarefied gas through the channel is obtained using the method of characteristics. It is shown that the type of the boundary condition becomes decisive in the construction of this solution. In a wide range of the Knudsen numbers, the reduced heat and gas mass flows through the cross-section of the channel are calculated depending on the accommodation coefficient of the tangential pulse. Limiting expressions of these flows for the free molecular and hydrodynamic flow regimes are obtained. The comparison with similar results presented in the open press is carried out. The obtained results can be used in the development of new nanotechnology.
Keywords: kinetic Boltzmann equation, Williams equation, mirror-diffuse reflection, mirror-diffuse model, Maxwell model, analytic solution, Knudsen number.
@article{SVMO_2018_20_1_a6,
     author = {O. V. Germider and V. N. Popov},
     title = {Mathematical modeling of transport processes in a~cylindrical channel},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {64--77},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a6/}
}
TY  - JOUR
AU  - O. V. Germider
AU  - V. N. Popov
TI  - Mathematical modeling of transport processes in a~cylindrical channel
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 64
EP  - 77
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a6/
LA  - ru
ID  - SVMO_2018_20_1_a6
ER  - 
%0 Journal Article
%A O. V. Germider
%A V. N. Popov
%T Mathematical modeling of transport processes in a~cylindrical channel
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 64-77
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a6/
%G ru
%F SVMO_2018_20_1_a6
O. V. Germider; V. N. Popov. Mathematical modeling of transport processes in a~cylindrical channel. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 64-77. http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a6/