Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_1_a6, author = {O. V. Germider and V. N. Popov}, title = {Mathematical modeling of transport processes in a~cylindrical channel}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {64--77}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a6/} }
TY - JOUR AU - O. V. Germider AU - V. N. Popov TI - Mathematical modeling of transport processes in a~cylindrical channel JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 64 EP - 77 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a6/ LA - ru ID - SVMO_2018_20_1_a6 ER -
O. V. Germider; V. N. Popov. Mathematical modeling of transport processes in a~cylindrical channel. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 64-77. http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a6/
[1] F. M. Sharipov, V. D. Seleznev, Rarefied Gas Flows in Channels and Microchannels, Ural Branch of the Russian Academy of Sciences Publ., Yekaterinburg, 2008, 230 pp. (In Russ.)
[2] M. N. Kogan, Rarefied Gas Flows in Channels and Microchannels, Nauka Publ., Moscow, 1967, 440 pp. (In Russ.)
[3] C. Cercignani, M. Lampis, “Kinetic models for gas-surface interactions”, Transport Theory and Statist. Phys., 1 (1971), 101–114 | DOI | MR | Zbl
[4] S. V. Gulakova V. N. Popov, “An analytic solution of the Williams equation in the problem of Poiseuille flow using a mirror-diffuse model interaction of gas molecules with channel walls”, Technical Physics, 85:4 (2015), 1–6 (In Russ.)
[5] C. E. Siewert, “The Linearized Boltzmann Equation: Concise and Accurate Solutions to Basic Flow Problems”, Zeitschrift fur Angewandte Mathematic und Physik, 54 (2003), 273–303 | DOI | MR | Zbl
[6] F. Sharipov, “Rarefied gas flow through a long tube at any pressure ratio”, J. Vac. Sci. Technol. A., 12:5 (1994), 2933–2935 | DOI
[7] M. Hadj-Nacer, Tangential momentum accommodation coefficient in microchannels with different surface materials (measurements and simulations), these de doctoraten Energetique, Universite d'aix Marseille, 2012, 210 pp.
[8] M. T. Ho, I. Graur, “Rarefied gas flow through a long rectangular channel of variable cross section”, Vacuum, 101 (2014), 328–332 | DOI
[9] F. M. Sharipov, “Rarefied gas flow through a long rectangular channel”, J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films, 17:5 (1999), 3062–3066 | DOI
[10] V. A. Titarev, E. M. Shakhov, “Kinetic analysis of an isothermal flow in a long microchannel with rectangular cross section”, Zh. Vychisl. Mat. Mat. Fiz., 50:7 (2010), 1285–1302 (In Russ.) | MR | Zbl
[11] O. V. Germider, V. N. Popov, “Mathematical modeling of the heat transfer process in a rectangular channel depending on Knudsen number”, Zhurnal SVMO, 18:2 (2016), 85–93 (In Russ.)
[12] S. Naris, D. Valougeorgis, “Rarefied gas flow in a triangular duct based on a boundary fitted lattice”, European Journal of Mechanics B/Fluids, 27:6 (2008), 810–822 | DOI | MR | Zbl
[13] C. E. Siewert, D. Valougeorgis, “An analytical discrete-ordinates solution of the S-model kinetic equations for flow in a cylindrical tube”, Journal of Quantitative Spectroscopy Radiative Transfer, 72 (2002), 531–550 | DOI
[14] P. Taheri, M. Bahrami, “Macroscopic description of nonequilibrium effects in thermal transpiration flows in annular microchannels”, Physical Review, 86 (2012), 1–9
[15] C. H. Kamphorst, P. Rodrigues, L. B. Barichello, “A closed-form solution of a kinetic integral equation for rarefied gas flow in a cylindrical duct”, Applied Mathematics, 5 (2014), 1516–1527 | DOI
[16] O. V. Germider, V. N. Popov, A. A. Yushkanov, “Mathematical modeling of the process heat transfer in a long cylindrical channel”, Zhurnal SVMO, 17:1 (2015), 22–29 (In Russ.)
[17] I. Graur, F. Sharipov, “Gas flow through an elliptical tube over the whole range of the gas rarefaction”, European Journal of Mechanics B/Fluids, 27:3 (2008), 335–345 | DOI | MR | Zbl
[18] O. V. Germider, V. N. Popov, A. A. Yushkanov, “Heat transfer process in an elliptic channel”, Matem. Mod., 29:1 (2017), 84–94 (In Russ.) | MR
[19] S. Pantazis, S. Varoutis, V. Hauer, C. Day, D. Valougeorgis, “Gas-surface scattering effect on vacuum gas flows through rectangular channels”, Vacuum, 85:12 (2011), 1161–1164 | DOI
[20] R. Courant, Partial Differential Equations, Mir Publ., Moscow, 1964, 830 pp. (In Russ.) | MR
[21] A. N. Kulev, Experimental study of nonisothermal gas flow in capillaries, PhD phys. and math. sci. diss., Sverdlovsk, 1977, 177 pp. (In Russ.)
[22] B. T. Porodnov, P. E. Suetin, S. F. Borisov, V. D. Akinshin,, “Experimental investigation of rarefied gas flow in different channels”, J. Fluid Mech., 64:3 (1974), 417–438 | DOI
[23] C. Cercignani, Mathematical methods in the kinetic theory of gases, Mir Publ., Moscow, 1973, 245 pp. (In Russ.) | MR
[24] A. G. Lesskis, A. A. Yushkanov, Yu. I. Yalamov, “Magnetic dipole absorption of infrared radiation by a fine metal particle”, Surface, 11 (1987), 115–121 (In Russ.)
[25] O. V. Germider, V. N. Popov, “Mathematical simulation of heat and mass transfer in a cylindrical channel versus the tangential momentum accommodation coefficient”, Technical Physics, 62:11 (2017), 1605–1610 | DOI
[26] A. V Latyshev, A. A. Yushkanov, Kinetic equations of Williams type and their exact solutions: monograph, MGOU Publ., Moscow, 2004, 271 pp. (In Russ.)