Mathematical modeling of transport processes in a~cylindrical channel
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 64-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the kinetic approach, a solution of heat and mass transfer problems in a long cylindrical channel is found using a mirror-diffuse model of the Maxwell boundary condition. The Williams equation is used as the main equation describing the kinetics of the process, assuming that a constant longitudinal temperature gradient is maintained in the channel. The Williams equation is written in the Cartesian coordinate system. The solution of the linearized problem of nonisothermal flow of the rarefied gas through the channel is obtained using the method of characteristics. It is shown that the type of the boundary condition becomes decisive in the construction of this solution. In a wide range of the Knudsen numbers, the reduced heat and gas mass flows through the cross-section of the channel are calculated depending on the accommodation coefficient of the tangential pulse. Limiting expressions of these flows for the free molecular and hydrodynamic flow regimes are obtained. The comparison with similar results presented in the open press is carried out. The obtained results can be used in the development of new nanotechnology.
Keywords: kinetic Boltzmann equation, Williams equation, mirror-diffuse reflection, mirror-diffuse model, Maxwell model, analytic solution, Knudsen number.
@article{SVMO_2018_20_1_a6,
     author = {O. V. Germider and V. N. Popov},
     title = {Mathematical modeling of transport processes in a~cylindrical channel},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {64--77},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a6/}
}
TY  - JOUR
AU  - O. V. Germider
AU  - V. N. Popov
TI  - Mathematical modeling of transport processes in a~cylindrical channel
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 64
EP  - 77
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a6/
LA  - ru
ID  - SVMO_2018_20_1_a6
ER  - 
%0 Journal Article
%A O. V. Germider
%A V. N. Popov
%T Mathematical modeling of transport processes in a~cylindrical channel
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 64-77
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a6/
%G ru
%F SVMO_2018_20_1_a6
O. V. Germider; V. N. Popov. Mathematical modeling of transport processes in a~cylindrical channel. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 64-77. http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a6/

[1] F. M. Sharipov, V. D. Seleznev, Rarefied Gas Flows in Channels and Microchannels, Ural Branch of the Russian Academy of Sciences Publ., Yekaterinburg, 2008, 230 pp. (In Russ.)

[2] M. N. Kogan, Rarefied Gas Flows in Channels and Microchannels, Nauka Publ., Moscow, 1967, 440 pp. (In Russ.)

[3] C. Cercignani, M. Lampis, “Kinetic models for gas-surface interactions”, Transport Theory and Statist. Phys., 1 (1971), 101–114 | DOI | MR | Zbl

[4] S. V. Gulakova V. N. Popov, “An analytic solution of the Williams equation in the problem of Poiseuille flow using a mirror-diffuse model interaction of gas molecules with channel walls”, Technical Physics, 85:4 (2015), 1–6 (In Russ.)

[5] C. E. Siewert, “The Linearized Boltzmann Equation: Concise and Accurate Solutions to Basic Flow Problems”, Zeitschrift fur Angewandte Mathematic und Physik, 54 (2003), 273–303 | DOI | MR | Zbl

[6] F. Sharipov, “Rarefied gas flow through a long tube at any pressure ratio”, J. Vac. Sci. Technol. A., 12:5 (1994), 2933–2935 | DOI

[7] M. Hadj-Nacer, Tangential momentum accommodation coefficient in microchannels with different surface materials (measurements and simulations), these de doctoraten Energetique, Universite d'aix Marseille, 2012, 210 pp.

[8] M. T. Ho, I. Graur, “Rarefied gas flow through a long rectangular channel of variable cross section”, Vacuum, 101 (2014), 328–332 | DOI

[9] F. M. Sharipov, “Rarefied gas flow through a long rectangular channel”, J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films, 17:5 (1999), 3062–3066 | DOI

[10] V. A. Titarev, E. M. Shakhov, “Kinetic analysis of an isothermal flow in a long microchannel with rectangular cross section”, Zh. Vychisl. Mat. Mat. Fiz., 50:7 (2010), 1285–1302 (In Russ.) | MR | Zbl

[11] O. V. Germider, V. N. Popov, “Mathematical modeling of the heat transfer process in a rectangular channel depending on Knudsen number”, Zhurnal SVMO, 18:2 (2016), 85–93 (In Russ.)

[12] S. Naris, D. Valougeorgis, “Rarefied gas flow in a triangular duct based on a boundary fitted lattice”, European Journal of Mechanics B/Fluids, 27:6 (2008), 810–822 | DOI | MR | Zbl

[13] C. E. Siewert, D. Valougeorgis, “An analytical discrete-ordinates solution of the S-model kinetic equations for flow in a cylindrical tube”, Journal of Quantitative Spectroscopy Radiative Transfer, 72 (2002), 531–550 | DOI

[14] P. Taheri, M. Bahrami, “Macroscopic description of nonequilibrium effects in thermal transpiration flows in annular microchannels”, Physical Review, 86 (2012), 1–9

[15] C. H. Kamphorst, P. Rodrigues, L. B. Barichello, “A closed-form solution of a kinetic integral equation for rarefied gas flow in a cylindrical duct”, Applied Mathematics, 5 (2014), 1516–1527 | DOI

[16] O. V. Germider, V. N. Popov, A. A. Yushkanov, “Mathematical modeling of the process heat transfer in a long cylindrical channel”, Zhurnal SVMO, 17:1 (2015), 22–29 (In Russ.)

[17] I. Graur, F. Sharipov, “Gas flow through an elliptical tube over the whole range of the gas rarefaction”, European Journal of Mechanics B/Fluids, 27:3 (2008), 335–345 | DOI | MR | Zbl

[18] O. V. Germider, V. N. Popov, A. A. Yushkanov, “Heat transfer process in an elliptic channel”, Matem. Mod., 29:1 (2017), 84–94 (In Russ.) | MR

[19] S. Pantazis, S. Varoutis, V. Hauer, C. Day, D. Valougeorgis, “Gas-surface scattering effect on vacuum gas flows through rectangular channels”, Vacuum, 85:12 (2011), 1161–1164 | DOI

[20] R. Courant, Partial Differential Equations, Mir Publ., Moscow, 1964, 830 pp. (In Russ.) | MR

[21] A. N. Kulev, Experimental study of nonisothermal gas flow in capillaries, PhD phys. and math. sci. diss., Sverdlovsk, 1977, 177 pp. (In Russ.)

[22] B. T. Porodnov, P. E. Suetin, S. F. Borisov, V. D. Akinshin,, “Experimental investigation of rarefied gas flow in different channels”, J. Fluid Mech., 64:3 (1974), 417–438 | DOI

[23] C. Cercignani, Mathematical methods in the kinetic theory of gases, Mir Publ., Moscow, 1973, 245 pp. (In Russ.) | MR

[24] A. G. Lesskis, A. A. Yushkanov, Yu. I. Yalamov, “Magnetic dipole absorption of infrared radiation by a fine metal particle”, Surface, 11 (1987), 115–121 (In Russ.)

[25] O. V. Germider, V. N. Popov, “Mathematical simulation of heat and mass transfer in a cylindrical channel versus the tangential momentum accommodation coefficient”, Technical Physics, 62:11 (2017), 1605–1610 | DOI

[26] A. V Latyshev, A. A. Yushkanov, Kinetic equations of Williams type and their exact solutions: monograph, MGOU Publ., Moscow, 2004, 271 pp. (In Russ.)