Continuous method of second order with constant coefficients for equations of monotone type
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 39-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Convergence of the second order continuous method with constant coefficients for nonlinear equations is investigated. The cases of a monotone operator equation in Hilbert space and of an accretive operator equation in reflexive Banach space which is strictly convex together with its conjugate, are considered separately. In each case, sufficient conditions for the convergence with respect to the norm of the space specified by the method are obtained. In the accretive case, sufficient conditions for the continuous method convergence include not only the requirements on the operator equation and on the coefficients of the differential equation defining the method, but also on the geometry of space where the equation is solved. Examples of Banach spaces with the desired geometric properties are shown.
Keywords: Hilbert space, Banach space, strongly monotone operator, Lipschitz condition, strongly accretive operator, duality mapping, continuous method
Mots-clés : convergence.
@article{SVMO_2018_20_1_a3,
     author = {I. P. Ryazantseva and Bubnova O.Y.},
     title = {Continuous  method of second order   with constant coefficients for equations of monotone type},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {39--45},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a3/}
}
TY  - JOUR
AU  - I. P. Ryazantseva
AU  - Bubnova O.Y.
TI  - Continuous  method of second order   with constant coefficients for equations of monotone type
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 39
EP  - 45
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a3/
LA  - ru
ID  - SVMO_2018_20_1_a3
ER  - 
%0 Journal Article
%A I. P. Ryazantseva
%A Bubnova O.Y.
%T Continuous  method of second order   with constant coefficients for equations of monotone type
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 39-45
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a3/
%G ru
%F SVMO_2018_20_1_a3
I. P. Ryazantseva; Bubnova O.Y. Continuous  method of second order   with constant coefficients for equations of monotone type. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 39-45. http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a3/

[1] M. M. Vainberg, Variational method and the monotone operator method in the theory of nonlinear equations, Nauka, Publ., M., 1972, 416 pp. (In Russ.) | MR

[2] Ya. Alber, Ya. Ryazantseva, Nonlinear III-posed problems of monotone type, Springer, Dordrecht, 2006, 410 pp. | MR

[3] V. A. Trenogin, Functional analysis, Nauka Publ., Moscow, 1980, 495 pp. (In Russ.) | MR

[4] F. P. Vasilev, Methods for solving of extremal problems, Nauka Publ., Moscow, 1981, 410 pp. (In Russ.) | MR

[5] I. P. Ryazantseva, “Continuous methods for constrained minimization problems”, Comp. Math. and Math. Phys., 39:5 (1999), 702–710 | MR | Zbl

[6] I. P. Ryazantseva, “Second order methods for accretive inclusiions in a Banach space”, Differenc. uravneniya, 50:9 (2014), 1264-1275 (In Russ.) | DOI | MR | Zbl

[7] I. P. Ryazantseva, O. Yu. Bubnova, “Continuous second order methods for nonlinear accretive inclusiions in a Banach space”, Trudy Srednevolzhskogo matematicheskogo obshchestva, 3–4:1 (2002), 327–334 (In Russ.)

[8] O. Yu. Bubnova, Continuous and iterative methods for solving nonlinear ill-posed problems of monotone type, Ph.D. phys. and math. sci. diss., Nizhny Novgorod, 2005, 111 pp.