Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2018_20_1_a3, author = {I. P. Ryazantseva and Bubnova O.Y.}, title = {Continuous method of second order with constant coefficients for equations of monotone type}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {39--45}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a3/} }
TY - JOUR AU - I. P. Ryazantseva AU - Bubnova O.Y. TI - Continuous method of second order with constant coefficients for equations of monotone type JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 39 EP - 45 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a3/ LA - ru ID - SVMO_2018_20_1_a3 ER -
%0 Journal Article %A I. P. Ryazantseva %A Bubnova O.Y. %T Continuous method of second order with constant coefficients for equations of monotone type %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2018 %P 39-45 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a3/ %G ru %F SVMO_2018_20_1_a3
I. P. Ryazantseva; Bubnova O.Y. Continuous method of second order with constant coefficients for equations of monotone type. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 39-45. http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a3/
[1] M. M. Vainberg, Variational method and the monotone operator method in the theory of nonlinear equations, Nauka, Publ., M., 1972, 416 pp. (In Russ.) | MR
[2] Ya. Alber, Ya. Ryazantseva, Nonlinear III-posed problems of monotone type, Springer, Dordrecht, 2006, 410 pp. | MR
[3] V. A. Trenogin, Functional analysis, Nauka Publ., Moscow, 1980, 495 pp. (In Russ.) | MR
[4] F. P. Vasilev, Methods for solving of extremal problems, Nauka Publ., Moscow, 1981, 410 pp. (In Russ.) | MR
[5] I. P. Ryazantseva, “Continuous methods for constrained minimization problems”, Comp. Math. and Math. Phys., 39:5 (1999), 702–710 | MR | Zbl
[6] I. P. Ryazantseva, “Second order methods for accretive inclusiions in a Banach space”, Differenc. uravneniya, 50:9 (2014), 1264-1275 (In Russ.) | DOI | MR | Zbl
[7] I. P. Ryazantseva, O. Yu. Bubnova, “Continuous second order methods for nonlinear accretive inclusiions in a Banach space”, Trudy Srednevolzhskogo matematicheskogo obshchestva, 3–4:1 (2002), 327–334 (In Russ.)
[8] O. Yu. Bubnova, Continuous and iterative methods for solving nonlinear ill-posed problems of monotone type, Ph.D. phys. and math. sci. diss., Nizhny Novgorod, 2005, 111 pp.