On the dynamics of bifurcation diffeomorphisms of a simple arc
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 30-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the class of diffeomorphisms of a closed $n$-dimensional manifold that are bifurcation points of simple arcs in the space of diffeomorphisms. The concept of a simple arc arose as a result of research by S. Newhouse, J. Palis and Fl. Takens. They showed that a generic set of arcs starting in a Morse-Smale system have a diffeomorphism with a regular dynamics as the first bifurcation point. Namely, the non-wandering set of such a diffeomorphism is finite, but unlike Morse-Smale systems, it can have either one non-hyperbolic periodic orbit that is a saddle-node or a flip, or one orbit of a non-transversal intersection of invariant manifolds of periodic points. The authors studied the asymptotic properties and the embedding structure of the invariant manifolds of non-wandering points of bifurcation diffeomorphisms of a simple arc. The possibility of complete ordering of periodic orbits of such diffeomorphisms is also established.
Mots-clés : bifurcation points, simple arc.
@article{SVMO_2018_20_1_a2,
     author = {E. Nozdrinova and O. V. Pochinka},
     title = {On the dynamics of bifurcation diffeomorphisms of a simple arc},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {30--38},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a2/}
}
TY  - JOUR
AU  - E. Nozdrinova
AU  - O. V. Pochinka
TI  - On the dynamics of bifurcation diffeomorphisms of a simple arc
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 30
EP  - 38
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a2/
LA  - ru
ID  - SVMO_2018_20_1_a2
ER  - 
%0 Journal Article
%A E. Nozdrinova
%A O. V. Pochinka
%T On the dynamics of bifurcation diffeomorphisms of a simple arc
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 30-38
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a2/
%G ru
%F SVMO_2018_20_1_a2
E. Nozdrinova; O. V. Pochinka. On the dynamics of bifurcation diffeomorphisms of a simple arc. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 30-38. http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a2/

[1] V. Z. Grines, T. V. Medvedev, O. V. Pochinka, Dynamical Systems on 2- and 3-Manifolds, Springer, Switzerland, 2016, 313 pp. | MR | Zbl

[2] M. W. Hirsch, Differential topology, Springer, New York, 1979, 280 pp. | MR

[3] M. W. Hirsch, C. C. Pugh, M. Shub., Invariant manifolds, Lecture Notes in Mathematics, 1977, 583 pp. | MR | Zbl

[4] S. Matsumoto, “There are two isotopic Morse-Smale diffeomorphism which can not be joined by simple arcs”, Invent. Math., 51:1 (1979), 1–8 | DOI | MR

[5] S. Newhouse, J. Palis, F. Takens, “Bifurcations and stability of families of diffeomorphisms”, Publ. Math. de l' IHES, 57:1 (1983), 5–71 | DOI | MR | Zbl

[6] J. Palis, W. Melo, Geometric theory of dynamical systems, Mir Publ., Moscow, 1998, 301 pp. (In Russ.) | MR

[7] L. Fuchs, Partially ordered algebraic systems, Mir Publ., Moscow, 1965, 342 pp. (In Russ.) | MR