Stability of the asymptotic quiescent position of perturbed homogeneous nonstationary systems
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 13-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions for the existence of an asymptotic quiescent position for homogeneous non-stationary systems of ordinary differential equations with perturbations in the form of functions that disappear with time are obtained in this article. The method of proof is based on the construction of the Lyapunov function, which satisfies the conditions of the theorem proved by V. I. Zubov for the existence of an asymptotic quiescent position. An example of a system of non-linear and non-stationary ordinary differential equations is considered, which illustrates the obtained results.
Keywords: asymptotic quiescent position, asymptotic stability, non-autonomous differential equations, homogeneous differential equation, almost periodic functions, almost uniform average.
@article{SVMO_2018_20_1_a0,
     author = {A. P. Zhabko and O. G. Tikhomirov and O. N. Chizhova},
     title = {Stability of the asymptotic quiescent position of perturbed homogeneous nonstationary systems},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {13--22},
     year = {2018},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a0/}
}
TY  - JOUR
AU  - A. P. Zhabko
AU  - O. G. Tikhomirov
AU  - O. N. Chizhova
TI  - Stability of the asymptotic quiescent position of perturbed homogeneous nonstationary systems
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2018
SP  - 13
EP  - 22
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a0/
LA  - ru
ID  - SVMO_2018_20_1_a0
ER  - 
%0 Journal Article
%A A. P. Zhabko
%A O. G. Tikhomirov
%A O. N. Chizhova
%T Stability of the asymptotic quiescent position of perturbed homogeneous nonstationary systems
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2018
%P 13-22
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a0/
%G ru
%F SVMO_2018_20_1_a0
A. P. Zhabko; O. G. Tikhomirov; O. N. Chizhova. Stability of the asymptotic quiescent position of perturbed homogeneous nonstationary systems. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 13-22. http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a0/

[1] V. I. Zubov, Oscillations and waves, Leningrad University Publ., L., 1989, 415 pp. (In Russ.) | MR

[2] S. E. Kuptsova, “On the asymptotic behavior of solutions of systems of nonlinear nonstationary differential equations”, Trudy Srednevolzhskogo matematicheskogo obshchestva, 8:1 (2006), 235–243 (In Russ.) | MR

[3] A. Yu. Aleksandrov, Stability of motions of nonautonomous dynamical systems, Saint-Petersburg University Publ., Saint-Petersburg, 2004, 183 pp. (In Russ.)

[4] O. G. Tikhomirov, “Stability of homogeneous nonstationary systems of ordinary differential equations”, Vestnik SPbGU, 10:3 (2007), 123–192 (In Russ.) | MR

[5] O. G. Tikhomirov, E. V. Temkina, “Asymptotic quiescence position for systems of homogeneous non-stationary differential equations”, Vestnik SPbGU, 10:3 (2014), 58–65 (In Russ.) | MR

[6] V. I. Zubov, Stability of motion, Vysshaya Shkola Publ., M., 1973, 272 pp. (In Russ.) | MR

[7] H. A. Bohr, Almost periodic functions, Chelsea Publishing Company, Chelsea, 1947, 113 pp. | MR