@article{SVMO_2018_20_1_a0,
author = {A. P. Zhabko and O. G. Tikhomirov and O. N. Chizhova},
title = {Stability of the asymptotic quiescent position of perturbed homogeneous nonstationary systems},
journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
pages = {13--22},
year = {2018},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a0/}
}
TY - JOUR AU - A. P. Zhabko AU - O. G. Tikhomirov AU - O. N. Chizhova TI - Stability of the asymptotic quiescent position of perturbed homogeneous nonstationary systems JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2018 SP - 13 EP - 22 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a0/ LA - ru ID - SVMO_2018_20_1_a0 ER -
%0 Journal Article %A A. P. Zhabko %A O. G. Tikhomirov %A O. N. Chizhova %T Stability of the asymptotic quiescent position of perturbed homogeneous nonstationary systems %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2018 %P 13-22 %V 20 %N 1 %U http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a0/ %G ru %F SVMO_2018_20_1_a0
A. P. Zhabko; O. G. Tikhomirov; O. N. Chizhova. Stability of the asymptotic quiescent position of perturbed homogeneous nonstationary systems. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 20 (2018) no. 1, pp. 13-22. http://geodesic.mathdoc.fr/item/SVMO_2018_20_1_a0/
[1] V. I. Zubov, Oscillations and waves, Leningrad University Publ., L., 1989, 415 pp. (In Russ.) | MR
[2] S. E. Kuptsova, “On the asymptotic behavior of solutions of systems of nonlinear nonstationary differential equations”, Trudy Srednevolzhskogo matematicheskogo obshchestva, 8:1 (2006), 235–243 (In Russ.) | MR
[3] A. Yu. Aleksandrov, Stability of motions of nonautonomous dynamical systems, Saint-Petersburg University Publ., Saint-Petersburg, 2004, 183 pp. (In Russ.)
[4] O. G. Tikhomirov, “Stability of homogeneous nonstationary systems of ordinary differential equations”, Vestnik SPbGU, 10:3 (2007), 123–192 (In Russ.) | MR
[5] O. G. Tikhomirov, E. V. Temkina, “Asymptotic quiescence position for systems of homogeneous non-stationary differential equations”, Vestnik SPbGU, 10:3 (2014), 58–65 (In Russ.) | MR
[6] V. I. Zubov, Stability of motion, Vysshaya Shkola Publ., M., 1973, 272 pp. (In Russ.) | MR
[7] H. A. Bohr, Almost periodic functions, Chelsea Publishing Company, Chelsea, 1947, 113 pp. | MR