Numerical methods for the problems of nonlinear macroeconomic integral models
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 4, pp. 79-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we suggest several methods for numerical treatment of integral dynamical systems described by nonlinear integral equations of the special form. The first group of problems is connected with solution of nonlinear integral Volterra-type equations’ system with unknown function placed at the lower limits of integration. Two effective methods for solution of such systems are suggested. The first method is direct. The second method is iterative; it is based on the linearization of the integral operators using modified Newton-Kantorovich scheme. The second group of problems is connected with the optimal control problems in macroeconomical VCM models. We suggest two original approaches to these problems’ solution; these approaches allow to determine the extremals of functionals in the first approximation. Proposed algorithms also allow to obtain more accurate approximations. In the conclusion several numerical results for model problems are stated. These results allow to judge the effectiveness of the proposed approaches.
Keywords: systems of nonlinear integral equations, VCM models, Newton-Kantorovich method, nonlinear delays, extremal of functional, approximation of integrals.
@article{SVMO_2017_19_4_a6,
     author = {A. N. Tynda and N. Yu. Kudryashova (Blinkova)},
     title = {Numerical methods for the problems of nonlinear macroeconomic integral models},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {79--94},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a6/}
}
TY  - JOUR
AU  - A. N. Tynda
AU  - N. Yu. Kudryashova (Blinkova)
TI  - Numerical methods for the problems of nonlinear macroeconomic integral models
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 79
EP  - 94
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a6/
LA  - ru
ID  - SVMO_2017_19_4_a6
ER  - 
%0 Journal Article
%A A. N. Tynda
%A N. Yu. Kudryashova (Blinkova)
%T Numerical methods for the problems of nonlinear macroeconomic integral models
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 79-94
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a6/
%G ru
%F SVMO_2017_19_4_a6
A. N. Tynda; N. Yu. Kudryashova (Blinkova). Numerical methods for the problems of nonlinear macroeconomic integral models. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 4, pp. 79-94. http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a6/

[1] V. M. Glushkov, V. V. Ivanov, V. M. Yanenko, Modelling of developing systems, Nauka, Moscow, 1983, 352 pp. (In Russ.) | MR

[2] D. Sidorov, Integral Dynamical Models: Singularities, Signals and Control, World Scientific Series on Nonlinear Sciences Series A, 87, ed. L. O. Chua, World Scientific Press, Singapore, 2014, 300 pp. | DOI | MR

[3] N. Hritonenko, Yu. Yatsenko, Mathematical Modeling in Economics, Ecology, and the Environment, Kluwer Academic Publishers, Dordrecht, Netherlands, 1999 | MR | Zbl

[4] N. Hritonenko, Yu. Yatsenko, “Optimization of the lifetime of capital equipment using integral models”, Journal of Industrial and Management Optimization, 1:4 (2005), 415-432 | DOI | MR | Zbl

[5] I. Muftahov, A. Tynda, D. Sidorov, “Numeric solution of Volterra integral equations of the first kind with discontinuous kernels”, Journal of Computational and Applied Mathematics, 313:15 (2017), 119-128 | DOI | MR | Zbl

[6] N. Hritonenko, Yu. Yatsenko, “Structure of Optimal Trajectories in a Nonlinear Dynamic Model with Endogenous Delay”, Jour. Appl. Math., 5 (2004), 433-445 | DOI | MR | Zbl

[7] N. Hritonenko, Yu. Yatsenko, “Turnpike and Optimal Trajectories in Integral Dynamic Models with Endogenous Delay”, Journal of Optimization Theory and Applications, 127 (2005), 109-127 | DOI | MR | Zbl

[8] Yu. Yatsenko, “Volterra integral equations with unknown delay time”, Methods and Applications of Analysis, 2:4 (1995), 408-419 | DOI | MR | Zbl

[9] A. N. Tynda, “Solution of the systems of nonlinear Volterra integral equations with unknown delay”, Trudy Srednevolzhskogo matematicheskogo obshchestva, 9:1 (2007), 253-259 (In Russ.) | Zbl

[10] A. N. Tynda, “Iterative numerical method for integral models of a nonlinear dynamical system with unknown delay”, PAMM, 9:1 (2009), 591-592 | DOI

[11] A. N. Tynda, “On the direct numerical methods for systems of integral equations with nonlinear delays”, PAMM, 8:1 (2008), 10857-10858 | DOI | Zbl

[12] A. N. Tynda, E. S. Karpukhina, “Approximate solution of the optimization problem in nonlinear integral models of economics”, Sbornik statei X Mezhdunar. nauch.-tekhn. konf. “Analiticheskie i chislennye metody modelirovanija estestvenno-nauchnykh i socialnykh problem”, 2015, 99-103, Izdatelstvo PGU, Penza (In Russ.)

[13] Yu. P. Yatsenko, Integral models of the systems with controllable memory, Naukova dumka, Kiev, 1991, 217 pp. (In Russ.) | MR