Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2017_19_4_a6, author = {A. N. Tynda and N. Yu. Kudryashova (Blinkova)}, title = {Numerical methods for the problems of nonlinear macroeconomic integral models}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {79--94}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a6/} }
TY - JOUR AU - A. N. Tynda AU - N. Yu. Kudryashova (Blinkova) TI - Numerical methods for the problems of nonlinear macroeconomic integral models JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2017 SP - 79 EP - 94 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a6/ LA - ru ID - SVMO_2017_19_4_a6 ER -
%0 Journal Article %A A. N. Tynda %A N. Yu. Kudryashova (Blinkova) %T Numerical methods for the problems of nonlinear macroeconomic integral models %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2017 %P 79-94 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a6/ %G ru %F SVMO_2017_19_4_a6
A. N. Tynda; N. Yu. Kudryashova (Blinkova). Numerical methods for the problems of nonlinear macroeconomic integral models. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 4, pp. 79-94. http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a6/
[1] V. M. Glushkov, V. V. Ivanov, V. M. Yanenko, Modelling of developing systems, Nauka, Moscow, 1983, 352 pp. (In Russ.) | MR
[2] D. Sidorov, Integral Dynamical Models: Singularities, Signals and Control, World Scientific Series on Nonlinear Sciences Series A, 87, ed. L. O. Chua, World Scientific Press, Singapore, 2014, 300 pp. | DOI | MR
[3] N. Hritonenko, Yu. Yatsenko, Mathematical Modeling in Economics, Ecology, and the Environment, Kluwer Academic Publishers, Dordrecht, Netherlands, 1999 | MR | Zbl
[4] N. Hritonenko, Yu. Yatsenko, “Optimization of the lifetime of capital equipment using integral models”, Journal of Industrial and Management Optimization, 1:4 (2005), 415-432 | DOI | MR | Zbl
[5] I. Muftahov, A. Tynda, D. Sidorov, “Numeric solution of Volterra integral equations of the first kind with discontinuous kernels”, Journal of Computational and Applied Mathematics, 313:15 (2017), 119-128 | DOI | MR | Zbl
[6] N. Hritonenko, Yu. Yatsenko, “Structure of Optimal Trajectories in a Nonlinear Dynamic Model with Endogenous Delay”, Jour. Appl. Math., 5 (2004), 433-445 | DOI | MR | Zbl
[7] N. Hritonenko, Yu. Yatsenko, “Turnpike and Optimal Trajectories in Integral Dynamic Models with Endogenous Delay”, Journal of Optimization Theory and Applications, 127 (2005), 109-127 | DOI | MR | Zbl
[8] Yu. Yatsenko, “Volterra integral equations with unknown delay time”, Methods and Applications of Analysis, 2:4 (1995), 408-419 | DOI | MR | Zbl
[9] A. N. Tynda, “Solution of the systems of nonlinear Volterra integral equations with unknown delay”, Trudy Srednevolzhskogo matematicheskogo obshchestva, 9:1 (2007), 253-259 (In Russ.) | Zbl
[10] A. N. Tynda, “Iterative numerical method for integral models of a nonlinear dynamical system with unknown delay”, PAMM, 9:1 (2009), 591-592 | DOI
[11] A. N. Tynda, “On the direct numerical methods for systems of integral equations with nonlinear delays”, PAMM, 8:1 (2008), 10857-10858 | DOI | Zbl
[12] A. N. Tynda, E. S. Karpukhina, “Approximate solution of the optimization problem in nonlinear integral models of economics”, Sbornik statei X Mezhdunar. nauch.-tekhn. konf. “Analiticheskie i chislennye metody modelirovanija estestvenno-nauchnykh i socialnykh problem”, 2015, 99-103, Izdatelstvo PGU, Penza (In Russ.)
[13] Yu. P. Yatsenko, Integral models of the systems with controllable memory, Naukova dumka, Kiev, 1991, 217 pp. (In Russ.) | MR