Foliated models for orbifolds and their applications
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 4, pp. 33-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

A foliated model is constructed for every orbifold. Such model is a foliation with the leaf space coinciding with the orbifold. The canonical projection onto the leaf space is a submersion in the category of orbifolds. We prove that the group of all diffeomorphisms of an orbifold is isomorphic to the group of basic automorphisms (in the category of foliations) of the constructed model foliation. In terms of the model foliations necessary and sufficient conditions are found for orbifold to be good. As the application we obtain that every orbifold admitting Cartan geometry of zero curvature is good.
Keywords: orbifold, Ehresmann connection for a foliation, Cartan geometry.
Mots-clés : foliation
@article{SVMO_2017_19_4_a2,
     author = {N. I. Zhukova},
     title = {Foliated models for orbifolds and their applications},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {33--44},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a2/}
}
TY  - JOUR
AU  - N. I. Zhukova
TI  - Foliated models for orbifolds and their applications
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 33
EP  - 44
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a2/
LA  - ru
ID  - SVMO_2017_19_4_a2
ER  - 
%0 Journal Article
%A N. I. Zhukova
%T Foliated models for orbifolds and their applications
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 33-44
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a2/
%G ru
%F SVMO_2017_19_4_a2
N. I. Zhukova. Foliated models for orbifolds and their applications. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 4, pp. 33-44. http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a2/

[1] I. Satake, “On a generalization of the notion of manifold”, Proc. of the Nat. Ac. of Sciences, 42:6 (1956), 359–363 | DOI | MR | Zbl

[2] W. P. Thurston, The geometry and topology of 3-manifolds, Princeton University Press, Princeton, 1978

[3] A. Adem, J. Leida, Y. Ruan, Orbifolds and stringy topology, Cambridge University Press, New York, 2007 | MR | Zbl

[4] I. Moerdijk, D. Pronk, “Orbifolds, sheaves and groupoids”, K-Theory, 12:12 (1997), 3–21 | DOI | MR | Zbl

[5] A. V. Bagaev, N. I. Zhukova, “The isometry groups of Riemannian orbifolds”, Siberian Mathematical Journal, 48:4 (2007), 579–592 (In Russ.)

[6] R. A. Blumenthal, J.J. Hebda, “Ehresmann connections for foliations”, Indiana Univ. Math. J, 33:4 (1984), 597–611 | DOI | MR | Zbl

[7] A. Cap, J. Slovak, Parabolic Geometries I: Background and General Theory, American Mathematical Society: Publishing House, 2009 | MR | Zbl

[8] R. A. Blumenthal, “Cartan submersions and Cartan foliations”, Illinois J. Math., 256 (1987), 327–343 | DOI | MR

[9] N. I. Zhukova, “Minimal sets of Cartan foliations”, Proceedings of the Steklov Institute of Mathematics, 256 (2012), 115–147 (In Russ.)

[10] N. I. Zhukova, “Global attractors of complete conformal foliations”, Sbornik: Mathematics, 203:3 (2012), 79–-106 (In Russ.) | DOI | MR | Zbl