The nonlocal solvability conditions for a system with absolute terms for the case of positive coefficients
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 4, pp. 23-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem for a system of two quasilinear first order partial differential equations with absolute terms for the case of positive coefficients is considered. The study of the Cauchy’s problem solvability is based on the method of an additional argument, which allows to determine the solution in the original coordinates without involving the inverse function theorem. The existence of the Cauchy’s problem local solution with smoothness not lower than the smoothness of the initial conditions, is proven. Paper determines sufficient conditions for the existence of the Cauchy’s problem nonlocal solution continued by a finite number of steps from the local solution. The proof of the nonlocal resolvability of the Cauchy’s problem for a system of two quasilinear first order partial differential equations with absolute terms for the case of positive coefficients relies on global estimates.
Keywords: method of an additional argument, global estimates, Cauchy’s problem, first-order partial differential equations.
@article{SVMO_2017_19_4_a1,
     author = {M. V. Dontsova},
     title = {The nonlocal solvability conditions for a system with absolute terms for the case of positive coefficients},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {23--32},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a1/}
}
TY  - JOUR
AU  - M. V. Dontsova
TI  - The nonlocal solvability conditions for a system with absolute terms for the case of positive coefficients
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 23
EP  - 32
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a1/
LA  - ru
ID  - SVMO_2017_19_4_a1
ER  - 
%0 Journal Article
%A M. V. Dontsova
%T The nonlocal solvability conditions for a system with absolute terms for the case of positive coefficients
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 23-32
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a1/
%G ru
%F SVMO_2017_19_4_a1
M. V. Dontsova. The nonlocal solvability conditions for a system with absolute terms for the case of positive coefficients. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 4, pp. 23-32. http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a1/

[1] B. L. Rozhdestvenskij, N. N. Yanenko, Systems of quasilinear equations and their applications to gas dynamics, Nauka Publ., Moscow, 1968, 592 pp. (In Russ.) | MR

[2] M. I. Imanaliev, S. N. Alekseenko, “To the question of the existence of a smooth bounded solution for a system of two first-order nonlinear partial differential equations”, Doklady Mathematics, 379:1 (2001), 16—21 (In Russ.) | MR | Zbl

[3] M. I. Imanaliev, P. S. Pankov, S. N. Alekseenko, “Method of an additional argument”, Vestnik KazNU. Series Mathematics, mechanics, informatics., 2006, no. 1, Special issue, 60—64 (In Russ.)

[4] S. N. Alekseenko, M. V. Dontsova, “The investigation of a so lvability of the system of equations, describing a distribution of electrons in an electric field of sprite.”, Matem. Vestnik pedagogical institutes and universities of the Volga-Vyatka region, 14 (2012), 34—41 (In Russ.)

[5] S. N. Alekseenko, T. A. Shemyakina, M. V. Dontsova, “Nonlocal solvability conditions for systems of first order partial differential equations”, St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 2013, no. 3(177), 190–201 (In Russ.)

[6] S. N. Alekseenko, M. V. Dontsova, “The solvability conditions of the system of long waves in a water rectangular channel, the depth of which varies along the axis”, Journal Srednevolzhskogo matematicheskogo obshchestva, 18:2 (2016), 115–124 (In Russ.) | Zbl

[7] M. V. Dontsova, “Nonlocal solvability conditions of the Cauchy problem for a system of first order partial differential equations with continuous and bounded right-hand sides”, Vestnik of VSU. Series: Physics. Mathematics, 2014, no. 2, 116–130 (In Russ.) | Zbl