Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2017_19_4_a1, author = {M. V. Dontsova}, title = {The nonlocal solvability conditions for a system with absolute terms for the case of positive coefficients}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {23--32}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a1/} }
TY - JOUR AU - M. V. Dontsova TI - The nonlocal solvability conditions for a system with absolute terms for the case of positive coefficients JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2017 SP - 23 EP - 32 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a1/ LA - ru ID - SVMO_2017_19_4_a1 ER -
%0 Journal Article %A M. V. Dontsova %T The nonlocal solvability conditions for a system with absolute terms for the case of positive coefficients %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2017 %P 23-32 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a1/ %G ru %F SVMO_2017_19_4_a1
M. V. Dontsova. The nonlocal solvability conditions for a system with absolute terms for the case of positive coefficients. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 4, pp. 23-32. http://geodesic.mathdoc.fr/item/SVMO_2017_19_4_a1/
[1] B. L. Rozhdestvenskij, N. N. Yanenko, Systems of quasilinear equations and their applications to gas dynamics, Nauka Publ., Moscow, 1968, 592 pp. (In Russ.) | MR
[2] M. I. Imanaliev, S. N. Alekseenko, “To the question of the existence of a smooth bounded solution for a system of two first-order nonlinear partial differential equations”, Doklady Mathematics, 379:1 (2001), 16—21 (In Russ.) | MR | Zbl
[3] M. I. Imanaliev, P. S. Pankov, S. N. Alekseenko, “Method of an additional argument”, Vestnik KazNU. Series Mathematics, mechanics, informatics., 2006, no. 1, Special issue, 60—64 (In Russ.)
[4] S. N. Alekseenko, M. V. Dontsova, “The investigation of a so lvability of the system of equations, describing a distribution of electrons in an electric field of sprite.”, Matem. Vestnik pedagogical institutes and universities of the Volga-Vyatka region, 14 (2012), 34—41 (In Russ.)
[5] S. N. Alekseenko, T. A. Shemyakina, M. V. Dontsova, “Nonlocal solvability conditions for systems of first order partial differential equations”, St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 2013, no. 3(177), 190–201 (In Russ.)
[6] S. N. Alekseenko, M. V. Dontsova, “The solvability conditions of the system of long waves in a water rectangular channel, the depth of which varies along the axis”, Journal Srednevolzhskogo matematicheskogo obshchestva, 18:2 (2016), 115–124 (In Russ.) | Zbl
[7] M. V. Dontsova, “Nonlocal solvability conditions of the Cauchy problem for a system of first order partial differential equations with continuous and bounded right-hand sides”, Vestnik of VSU. Series: Physics. Mathematics, 2014, no. 2, 116–130 (In Russ.) | Zbl