Peculiarities of solving the integro-differential Maxwell equations and excitation of the surface polariton on the planar structure
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 3, pp. 73-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the diffraction of an electromagnetic wave at the vacuum-metal-nonlinear film-semiconductor interface with the excitation of a surface wave. Within the framework of the theory, the mode method for calculating the interaction of radiation with a structure is developed, which makes it possible to calculate the energy fluxes arising in diffraction processes for a fixed energy flux of the perturbation.
Keywords: integro-differential equations, Maxwell equations.
Mots-clés : surface polariton
@article{SVMO_2017_19_3_a6,
     author = {K. V. Bukhensky and A. B. Dubois and A. N. Konukhov and S. I. Kucheryavyy and S. N. Mashnina and A. S. Safoshkin},
     title = {Peculiarities of solving the integro-differential {Maxwell} equations and excitation of the surface polariton on the planar structure},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {73--81},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a6/}
}
TY  - JOUR
AU  - K. V. Bukhensky
AU  - A. B. Dubois
AU  - A. N. Konukhov
AU  - S. I. Kucheryavyy
AU  - S. N. Mashnina
AU  - A. S. Safoshkin
TI  - Peculiarities of solving the integro-differential Maxwell equations and excitation of the surface polariton on the planar structure
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 73
EP  - 81
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a6/
LA  - ru
ID  - SVMO_2017_19_3_a6
ER  - 
%0 Journal Article
%A K. V. Bukhensky
%A A. B. Dubois
%A A. N. Konukhov
%A S. I. Kucheryavyy
%A S. N. Mashnina
%A A. S. Safoshkin
%T Peculiarities of solving the integro-differential Maxwell equations and excitation of the surface polariton on the planar structure
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 73-81
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a6/
%G ru
%F SVMO_2017_19_3_a6
K. V. Bukhensky; A. B. Dubois; A. N. Konukhov; S. I. Kucheryavyy; S. N. Mashnina; A. S. Safoshkin. Peculiarities of solving the integro-differential Maxwell equations and excitation of the surface polariton on the planar structure. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 3, pp. 73-81. http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a6/

[1] D. Markuze, Optical waveguides, translation from English, ed. V.V. Shevchenko, Mir Publ., Moscow, 1974, 571 pp. (In Russ.)

[2] E. I. Nefedov, Diffraction of Electromagnetic Waves on Dielectric Structures, Nauka Publ., Moscow, 1978, 272 pp. (In Russ.)

[3] V. A. Kiselev, “Resonant transformation and reflection of surface waves in a thin-film waveguide with a sinusoidally corrugated surface”, Quantum Electronics, 1:2 (1974), 329 (In Russ.)

[4] V. V. Shevchenko, Smooth transitions in open waveguides., Nauka Publ., Moscow, 1978, 192 pp. (In Russ.)

[5] V. M. Agranovich, V. E. Kravtsov, T. A. Leskova, “Diffraction of the surface polaritons by an impedance step in the region of resonance with oscillations in a transition layer”, JETP, 81:5 (1981), 1828 (In Russ.)

[6] A. I. Voronko, L. G. Klimova, G. N. Shkerdin, “Reflection of surface polaritons at a dielectric barrier”, Solid State Comm., 6 (1987), 361 | DOI

[7] V. M. Agranovich, D. Mills, Surface polaritons, Nauka Publ., Moscow, 1986, 525 pp. (In Russ.)

[8] A. B. Dubois, M. A. Zilotova, S. I. Kucheryavyy, A. S. Safoshkin, “Kinetic processes in moderately doped heterojunction”, Vestnik of RSREU, 3:45 (2013), 88-92 (In Russ.)