About an a priori estimate for the second order elliptic operator degenerate alog coordinate axis orthogonal to semi-plane boundary
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 3, pp. 64-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the methodology is demonstrated to derive an inequality of special type. The left-hand side of this inequality is a norm of the second-order derivative of a function along the normal to a half-plane boundary. The right-hand side of the inequality is a linear combination of two terms. The first is a norm of a function image generated by degenerate elliptic operator, and the second is a trace of function on the half-plane boundary. Paper deals with norms in Sobolev spaces and in Slobodetzky spaces. In the inequality proof two function continuations from half-plane to the entire plane are used. Using the first continuation which has derivatives up to the third order the inequality is reduced to estimation of mixed derivatives and derivatives with respect to boundary's tangents. This derivatives are obtained using the second continuation that is twice differentiable.
Mots-clés : Fouries transform, Sobolev spaces
Keywords: a priori estimates, degenerate elliptic operator, function continuation.
@article{SVMO_2017_19_3_a5,
     author = {G. A. Smolkin},
     title = {About an a priori estimate for the second order elliptic operator degenerate alog coordinate axis orthogonal to semi-plane boundary},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {64--72},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a5/}
}
TY  - JOUR
AU  - G. A. Smolkin
TI  - About an a priori estimate for the second order elliptic operator degenerate alog coordinate axis orthogonal to semi-plane boundary
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 64
EP  - 72
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a5/
LA  - ru
ID  - SVMO_2017_19_3_a5
ER  - 
%0 Journal Article
%A G. A. Smolkin
%T About an a priori estimate for the second order elliptic operator degenerate alog coordinate axis orthogonal to semi-plane boundary
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 64-72
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a5/
%G ru
%F SVMO_2017_19_3_a5
G. A. Smolkin. About an a priori estimate for the second order elliptic operator degenerate alog coordinate axis orthogonal to semi-plane boundary. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 3, pp. 64-72. http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a5/

[1] Yu. V. Egorov, Linear differential equations of principal type, Nauka Publ., M., 1984, 360 pp. (In Russ.) | MR

[2] L. N. Slobodetskiy, “Generalized spaces of SL Sobolev and their applications to boundary-value problems for differential equations in partial derivatives”, Uch. app. Leningr. ped. in-ta, 197 (1958), 54-112. (In Russ.) | MR

[3] G. A. Smolkin, “A priori estimates associated with differential operators of type Kuptsov-Hermander”, Differential equations, 40:2 (2004), 242-250 (In Russ.) | MR | Zbl

[4] M. Teylor, Pseudodifferential operators, Mir Publ., M., 1985, 472 pp. (In Russ.) | MR