Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2017_19_3_a5, author = {G. A. Smolkin}, title = {About an a priori estimate for the second order elliptic operator degenerate alog coordinate axis orthogonal to semi-plane boundary}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {64--72}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a5/} }
TY - JOUR AU - G. A. Smolkin TI - About an a priori estimate for the second order elliptic operator degenerate alog coordinate axis orthogonal to semi-plane boundary JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2017 SP - 64 EP - 72 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a5/ LA - ru ID - SVMO_2017_19_3_a5 ER -
%0 Journal Article %A G. A. Smolkin %T About an a priori estimate for the second order elliptic operator degenerate alog coordinate axis orthogonal to semi-plane boundary %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2017 %P 64-72 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a5/ %G ru %F SVMO_2017_19_3_a5
G. A. Smolkin. About an a priori estimate for the second order elliptic operator degenerate alog coordinate axis orthogonal to semi-plane boundary. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 3, pp. 64-72. http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a5/
[1] Yu. V. Egorov, Linear differential equations of principal type, Nauka Publ., M., 1984, 360 pp. (In Russ.) | MR
[2] L. N. Slobodetskiy, “Generalized spaces of SL Sobolev and their applications to boundary-value problems for differential equations in partial derivatives”, Uch. app. Leningr. ped. in-ta, 197 (1958), 54-112. (In Russ.) | MR
[3] G. A. Smolkin, “A priori estimates associated with differential operators of type Kuptsov-Hermander”, Differential equations, 40:2 (2004), 242-250 (In Russ.) | MR | Zbl
[4] M. Teylor, Pseudodifferential operators, Mir Publ., M., 1985, 472 pp. (In Russ.) | MR