Accuracy of difference schemes for nonlinear elliptic equations with non-restricted nonlinearity
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 3, pp. 41-52

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the first boundary-value problem for nonlinear elliptic equations with mixed derivatives and unrestricted nonlinearity. Difference scheme for solution of a given problem class and an iterative process implementing the scheme are constructed and studied. Rigorous study of the iterative process’ convergence is conducted. Existence and uniqueness of solution of nonlinear difference scheme approximating the original differential problem are proved. Estimates of convergence rates for difference schemes approximating nonlinear equation with non-restricted nonlinearity are obtained. These estimates are consistent with the smoothness of the sought solution.
Keywords: nonlinear elliptic equations, difference method of solving, accuracy of difference approximations, iterative process.
@article{SVMO_2017_19_3_a3,
     author = {F. V. Lubyshev and M. \`E. Fairuzov and A. R. Manapova},
     title = {Accuracy of difference schemes for nonlinear elliptic equations with non-restricted nonlinearity},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {41--52},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a3/}
}
TY  - JOUR
AU  - F. V. Lubyshev
AU  - M. È. Fairuzov
AU  - A. R. Manapova
TI  - Accuracy of difference schemes for nonlinear elliptic equations with non-restricted nonlinearity
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 41
EP  - 52
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a3/
LA  - ru
ID  - SVMO_2017_19_3_a3
ER  - 
%0 Journal Article
%A F. V. Lubyshev
%A M. È. Fairuzov
%A A. R. Manapova
%T Accuracy of difference schemes for nonlinear elliptic equations with non-restricted nonlinearity
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 41-52
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a3/
%G ru
%F SVMO_2017_19_3_a3
F. V. Lubyshev; M. È. Fairuzov; A. R. Manapova. Accuracy of difference schemes for nonlinear elliptic equations with non-restricted nonlinearity. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 3, pp. 41-52. http://geodesic.mathdoc.fr/item/SVMO_2017_19_3_a3/