Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2017_19_2_a8, author = {D. V. sirotkin}, title = {Theorems of existence and sufficiency connected with local transformations of graphs for the $k$-colourability problem}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {98--104}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a8/} }
TY - JOUR AU - D. V. sirotkin TI - Theorems of existence and sufficiency connected with local transformations of graphs for the $k$-colourability problem JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2017 SP - 98 EP - 104 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a8/ LA - ru ID - SVMO_2017_19_2_a8 ER -
%0 Journal Article %A D. V. sirotkin %T Theorems of existence and sufficiency connected with local transformations of graphs for the $k$-colourability problem %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2017 %P 98-104 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a8/ %G ru %F SVMO_2017_19_2_a8
D. V. sirotkin. Theorems of existence and sufficiency connected with local transformations of graphs for the $k$-colourability problem. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 2, pp. 98-104. http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a8/
[1] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Mir Publ., Moscow, 1982, 416 pp. (In Russ.) | MR
[2] V. E. Alekseev, V. V. Lozin, “On local transformations of graphs that preserve the independence number”, Diskretnyi Analiz i Issledovanie Operatsii, 5:1 (1998), 3–19 (In Russ.) | MR | Zbl
[3] V. E. Alekseev, V. V. Lozin, “Local transformations of graphs preserving independence number”, Discrete Applied Mathematics, 135 (2004), 16–29 | MR
[4] V. E. Alekseev, D. S. Malyshev, “Planar graph classes with the independent set problem solvable in polynomial time”, Journal of Applied and Industrial Mathematics, 3:1 (2008), 1–5 | DOI | MR
[5] B. Lévêque, D. de Werra, “Graph transformations preserving the stability number”, Discrete Applied Mathematics, 160:18 (2012), 2752–2759 | DOI | MR | Zbl
[6] V. V. Lozin, “Conic reduction of graphs for the stable set problem”, Discrete Mathematics, 222:1–3 (2000), 199–211 | DOI | MR | Zbl
[7] V. V. Lozin, “Stability preserving transformations of graphs”, Annals of Operations Research, 188 (2011), 331–341 | DOI | MR | Zbl
[8] D. S. Malyshev, “Classes of subcubic planar graphs for which the independent set problem is polynomially solvable”, Journal of Applied and Industrial Mathematics, 7:2 (2013), 221–228 | DOI | MR