Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2017_19_2_a5, author = {M. I. kuptsov and M. T. Teryokhin and V. V. Tenyaev}, title = {To the problem of existence of integral manifolds systems of differential equations not solved with respect to derivatives}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {76--84}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a5/} }
TY - JOUR AU - M. I. kuptsov AU - M. T. Teryokhin AU - V. V. Tenyaev TI - To the problem of existence of integral manifolds systems of differential equations not solved with respect to derivatives JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2017 SP - 76 EP - 84 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a5/ LA - ru ID - SVMO_2017_19_2_a5 ER -
%0 Journal Article %A M. I. kuptsov %A M. T. Teryokhin %A V. V. Tenyaev %T To the problem of existence of integral manifolds systems of differential equations not solved with respect to derivatives %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2017 %P 76-84 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a5/ %G ru %F SVMO_2017_19_2_a5
M. I. kuptsov; M. T. Teryokhin; V. V. Tenyaev. To the problem of existence of integral manifolds systems of differential equations not solved with respect to derivatives. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 2, pp. 76-84. http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a5/
[1] N. N. Bogolyubov, About some statistical methods in mathematical physics, Akad. Nauk Ukr. Sov. Sots. Resp., Lvov, 1945, 139 pp. (In Russ.) | MR
[2] Yu.A. Mitropol’skii, O.B. Lykova, Integral manifolds in nonlinear mechanics, Nauka, Moscow, 1973, 512 pp. (In Russ.) | MR
[3] A.M. Samoilenko, The elements of mathematical theory of multi frequency vibrations. Invariant tori, Nauka, Moscow, 1987, 301 pp. (In Russ.) | MR
[4] A.M. Samoylenko , Yu.V. Teplins’kyy , K.V. Pasiuk, “On the existence of infinite-dimensional invariant tori of nonlinear countable systems of difference-differential equations”, Neliniyni kolyvannya, 13:2 (2010), 253–271 (In Ukrainian) | MR | Zbl
[5] S.Z. Kurbanshoev , M.A. Nusairiev, “The construction of optimal integral manifold for the nonlinear differential equations”, Doklady Akademii Nauk Respubliki Tadzhikistan, 57:11-12 (2014), 807–812 (In Russ.)
[6] E.V. Shchetinina, “Integral manifolds for slow-fast systems and the stability loss delay”, Vestnik Samarskogo Gosudarstvennogo Universiteta, 6 (2010), 93–105 (In Russ.)
[7] Yu.N. Bibikov, Multi frequent nonlinear vibrations and their bifurcation, Len. Gos. Univ., Leningrad, 1991, 142 pp. (In Russ.) | MR
[8] D.Yu. Volkov, “Bifurcation of invariant torus fromcondition of equilibrium having zero eigenvalue”, Vestnik Leningradskogo universiteta, 1:2 (1988), 102–103 (In Russ.)
[9] M.I. Kuptsov, Sushchestvovanie integral'nyh mnogoobrazij i periodicheskih reshenij sistemy obyknovennyh differencial'nyh uravnenij [The existence of integral manifolds and periodic solution of system of ordinary differential equations], Diss. ... kand. fiz.-mat. nauk [ PhD phys. and math. sci. diss.], Izhevsk, 1997, 133 pp. (In Russ.)
[10] M.I. Kuptsov, “Local integral manifold of differential equations` system which depend on the parameter”, Differ. Uravn., 35:11 (1999), 1579–1580 (In Russ.)
[11] M.I. Kuptsov, “About the conditions of existence of integral manifolds of ordinary differential equations not solved relating theirderivatives”, Trudy Srednevolzhskogo Matematicheskogo Obshchestva, 2:1 (1999), 95–96 (In Russ.)
[12] M.I. Kuptsov, “The existence of integral manifolds of differential equations` system”, Differ. Uravn., 34:6 (1998), 855–855 (In Russ.) | MR
[13] M. I. Kuptsov, “Local integral manifold of a system of differential equations”, Differential equations, 34:7 (1998), 1005–1007 | MR | Zbl
[14] M.T. Terekhin, Periodic solutions of systems of ordinary differential equations, Ryaz. Gos. Ped. Inst., Ryazan, 1992, 88 pp. (In Russ.)