Examples of strange attractors in three-dimentional nonoriented maps
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 2, pp. 62-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of existance of discrete strangehomoclinic attractors (i.e. attrators which posess exactly one fixed point) for three-dimensional non-oriented diffeomorphisms. In this article we solve this problem using three-dimensional non-oriented generalized Hénon maps, i.e. polynomial maps with constant and negative Jacobian. We show that such maps can posses non-oriented discrete homoclinic attractors of different types. Herewith the main attention in this work is paid to the description of qualitative and numerical methods which are used to find such attractors (the saddle chart, colored Lyapunov diagram) as well as to the description of attractors’ geometric structures. Examples of various non-oriented strange attractors that were found in specific three-dimensional maps by means of above listed methods are also given.
Mots-clés : chaos
Keywords: strange homoclinic attractors, spiral attractor, three-dimentional Hénon map, saddle chart, colored Lyapunov diagram.
@article{SVMO_2017_19_2_a4,
     author = {A. D. Kozlov},
     title = {Examples of strange attractors in three-dimentional nonoriented maps},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {62--75},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a4/}
}
TY  - JOUR
AU  - A. D. Kozlov
TI  - Examples of strange attractors in three-dimentional nonoriented maps
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 62
EP  - 75
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a4/
LA  - ru
ID  - SVMO_2017_19_2_a4
ER  - 
%0 Journal Article
%A A. D. Kozlov
%T Examples of strange attractors in three-dimentional nonoriented maps
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 62-75
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a4/
%G ru
%F SVMO_2017_19_2_a4
A. D. Kozlov. Examples of strange attractors in three-dimentional nonoriented maps. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 2, pp. 62-75. http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a4/

[1] A. S. Gonchenko, S. V. Gonchenko, L. P. Shilnikov, “Towards scenarios of chaos appearance in three-dimensional maps”, Russian Journal of Nonlinear Dynamics, 8:1 (2012), 3–28 (In Russ.)

[2] A. Gonchenko, S. Gonchenko, “Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps”, Physica D (to appear) , arXiv: 1510.02252v2 [math.DS] | MR

[3] A. V. Borisov, A. O. Kazakov, I. R. Sataev, “The reversal and chaotic attractor in the nonholonomic model of Chaplygin’s top”, Regular and Chaotic Dynamics, 19:6 (2014), 718–733 | DOI | MR | Zbl

[4] A. V. Borisov, A. O. Kazakov, I. R. Sataev, “Spiral chaos in the nonholonomic model of a Chaplygin top”, Regular and Chaotic Dynamics, 21 (2016), 939–954 | DOI | MR | Zbl

[5] A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, “Richness of chaotic dynamics in nonholonomic models of a Celtic stone”, Regular and Chaotic Dynamics, 18:5 (2013), 521-538 | DOI | MR | Zbl

[6] A. S. Gonchenko, A. D. Kozlov, “On scenaria of chaos appearance in three-dimension nonorientable maps”, J. SVMO, 18:4 (2016), 17–29 (In Russ.)

[7] D. V. Turaev, L. P. Shilnikov, “Pseudo-hyperbolisity and the problem on periodic perturbations of Lorenz-like attractors.”, Doklady Mathematics, 418:1 (2008), 23–27 (In Russ.) | Zbl

[8] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, Leon O. Chua, Methods of qualitative theory in nonlinear dunamics. Part 2, “Regular and Chaotic Dynamics”, Insitute of computer research, Moscow – Izhevsk, 2009, 548 pp. (In Russ.)