Nondissipativ kinematic dynamics on lenses
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 2, pp. 53-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we construct smooth (infinitely differentiable) diffeomorphism of three dimensional lens (that is a closed three-manifold that is sheet-finitely covered by three-dimensional sphere). We include a three-dimensional sphere in the list of lens. This mapping has a positive entropy and preserves the volume in some neighborhood of its non-wandering set. We examine the space of diffeomorphisms that are conservative in some neighborhood of their non-wandering sets. In this space there is a neighbourhood consisting of mappings with positive topological entropy (i.e., the diffeomorphism constructed is relatively stable in the class of diffeomorphisms). Due to its properties, the diffeomorphism constructed can act like a model of non-dissipative kinematic fast dynamo. The question is open either the diffeomorphism constructed is the model of a middle or dissipative fast dynamo.
Keywords: diffeomorphism of a solid torus
Mots-clés : solenoid, nondissipative dynamo.
@article{SVMO_2017_19_2_a3,
     author = {E. V. Zhuzhoma and V. S. Medvedev},
     title = {Nondissipativ kinematic dynamics on lenses},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {53--61},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a3/}
}
TY  - JOUR
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
TI  - Nondissipativ kinematic dynamics on lenses
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 53
EP  - 61
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a3/
LA  - ru
ID  - SVMO_2017_19_2_a3
ER  - 
%0 Journal Article
%A E. V. Zhuzhoma
%A V. S. Medvedev
%T Nondissipativ kinematic dynamics on lenses
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 53-61
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a3/
%G ru
%F SVMO_2017_19_2_a3
E. V. Zhuzhoma; V. S. Medvedev. Nondissipativ kinematic dynamics on lenses. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 2, pp. 53-61. http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a3/

[1] V.I. Arnold, B.A. Hesin, Topological Methods in Hydrodynamics, MCNMO publ, M., 2007 (In Russ)

[2] J.M. Aarts, R.J. Fokkink, “The classification of solenoids”, Proc. of Amer. Math. Soc., 111 (1991), 1161–1163 | DOI | MR | Zbl

[3] R.H. Bing, “A simple closed curve is the only homogeneous bounded plane continuum that contains an arc”, Canadian Journ. Math., 12 (1960), 209–230 | DOI | MR | Zbl

[4] R.H. Bing, “Embedding circle-line continua in the plane”, Canadian Journ. Math., 14 (1962), 113–128 | DOI | MR | Zbl

[5] V.V. Nemitsky, V.V. Stepanov, Qualitative theory of differential equations, OGIZ, M.-L., 1947 (In Russ) | MR

[6] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 741–817 | DOI | MR

[7] D.V. Anosov, “Initial concepts. Elemetary theory”, Sovremennye problemy matematiki, Fundamentalnye napravleniya (Itogi nauki i tehniki), 1 (1985), 156–204 (In Russ)

[8] D.V. Anosov, V.V. Solodov, “Hyperbolic sets”, Sovremennye problemy matematiki, Fundamentalnye napravleniya (Itogi nauki i techniki), 66 (1991), 12–99 (In Russ) | MR

[9] Uy.S. Ilyashenko, Li Weigu, Nonlocal bifurcations, MCNMO-CheRo, M., 1999 (In Russ) | MR

[10] S. Aranson, G. Belitsky, E. Zhuzhoma, Introduction to Qualitative Theory of Dynamical Systems on Closed Surfaces, Translations of Math. Monographs, 196, Amer. Math. Soc., N.Y., 1996 | DOI | MR

[11] C. Robinson, Dynamical Systems: stability, symbolic dynamics, and chaos, Studies in Adv. Math., CRC Press, Boca Raton, 1999 | MR | Zbl

[12] D. Turaev, L.P. Shilnikov, “About the blue sky catasrophe”, Doklady RAN, 342:5 (1995), 596–599 (In Russ) | MR | Zbl

[13] H. Bothe, “The ambient structure of expanding attractors, II. Solenoids in 3-manifolds”, Math. Nachr., 112 (1983), 69–102 | DOI | MR | Zbl

[14] B. Jiang, Y. Ni, Ch. Wang, “3-manifolds that admit knotted solenoids as attractors”, Trans. Amer. Math. Soc., 356 (2004), 4371–4382 | DOI | MR | Zbl

[15] Jiming Ma, Bin Yu, “The realization of Smale solenoid type attractors in 3-manifolds”, Topology and Appl., 154 (2007), 3021–3031 | DOI | MR | Zbl

[16] S. Smale, “Diffeomorphisms with many periodic points”, Differential and Combinatorial Topology, 1965, 63–80 | DOI | MR | Zbl

[17] M. Shub, “Endomorphisms of compact differentiable manifolds”, Amer. Journ. Math., 91 (1969), 175–199 | DOI | MR | Zbl

[18] E.V. Zhuzhoma, N.V. Isaenkova, “On zero-dimensional solenoidal basis sets”, Matem. sbornik, 202:3 (2011), 47–68 (In Russ) | DOI | MR | Zbl

[19] E.V. Zhuzhoma, N.V. Isaenkova, “On zero-dimensional solenoidal basis sets”, Matem. sbornik, 202:3 (2011), 47–68 (In Russ) | DOI | MR | Zbl

[20] R. Bowen, “Topological entropy and Axiom A.”, Global Analysis, Proc. Sympos. Pure Math., 14, Amer. Math. Soc., 1970, 23–42 | DOI | MR

[21] I. Klapper, L.-S. Young, “Rigorous bounds of the fast dynamo growth rate involving topological entropy”, Comm. Math. Phys., 173 (1995), 623–646 | DOI | MR | Zbl