Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2017_19_2_a3, author = {E. V. Zhuzhoma and V. S. Medvedev}, title = {Nondissipativ kinematic dynamics on lenses}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {53--61}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a3/} }
E. V. Zhuzhoma; V. S. Medvedev. Nondissipativ kinematic dynamics on lenses. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 2, pp. 53-61. http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a3/
[1] V.I. Arnold, B.A. Hesin, Topological Methods in Hydrodynamics, MCNMO publ, M., 2007 (In Russ)
[2] J.M. Aarts, R.J. Fokkink, “The classification of solenoids”, Proc. of Amer. Math. Soc., 111 (1991), 1161–1163 | DOI | MR | Zbl
[3] R.H. Bing, “A simple closed curve is the only homogeneous bounded plane continuum that contains an arc”, Canadian Journ. Math., 12 (1960), 209–230 | DOI | MR | Zbl
[4] R.H. Bing, “Embedding circle-line continua in the plane”, Canadian Journ. Math., 14 (1962), 113–128 | DOI | MR | Zbl
[5] V.V. Nemitsky, V.V. Stepanov, Qualitative theory of differential equations, OGIZ, M.-L., 1947 (In Russ) | MR
[6] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 741–817 | DOI | MR
[7] D.V. Anosov, “Initial concepts. Elemetary theory”, Sovremennye problemy matematiki, Fundamentalnye napravleniya (Itogi nauki i tehniki), 1 (1985), 156–204 (In Russ)
[8] D.V. Anosov, V.V. Solodov, “Hyperbolic sets”, Sovremennye problemy matematiki, Fundamentalnye napravleniya (Itogi nauki i techniki), 66 (1991), 12–99 (In Russ) | MR
[9] Uy.S. Ilyashenko, Li Weigu, Nonlocal bifurcations, MCNMO-CheRo, M., 1999 (In Russ) | MR
[10] S. Aranson, G. Belitsky, E. Zhuzhoma, Introduction to Qualitative Theory of Dynamical Systems on Closed Surfaces, Translations of Math. Monographs, 196, Amer. Math. Soc., N.Y., 1996 | DOI | MR
[11] C. Robinson, Dynamical Systems: stability, symbolic dynamics, and chaos, Studies in Adv. Math., CRC Press, Boca Raton, 1999 | MR | Zbl
[12] D. Turaev, L.P. Shilnikov, “About the blue sky catasrophe”, Doklady RAN, 342:5 (1995), 596–599 (In Russ) | MR | Zbl
[13] H. Bothe, “The ambient structure of expanding attractors, II. Solenoids in 3-manifolds”, Math. Nachr., 112 (1983), 69–102 | DOI | MR | Zbl
[14] B. Jiang, Y. Ni, Ch. Wang, “3-manifolds that admit knotted solenoids as attractors”, Trans. Amer. Math. Soc., 356 (2004), 4371–4382 | DOI | MR | Zbl
[15] Jiming Ma, Bin Yu, “The realization of Smale solenoid type attractors in 3-manifolds”, Topology and Appl., 154 (2007), 3021–3031 | DOI | MR | Zbl
[16] S. Smale, “Diffeomorphisms with many periodic points”, Differential and Combinatorial Topology, 1965, 63–80 | DOI | MR | Zbl
[17] M. Shub, “Endomorphisms of compact differentiable manifolds”, Amer. Journ. Math., 91 (1969), 175–199 | DOI | MR | Zbl
[18] E.V. Zhuzhoma, N.V. Isaenkova, “On zero-dimensional solenoidal basis sets”, Matem. sbornik, 202:3 (2011), 47–68 (In Russ) | DOI | MR | Zbl
[19] E.V. Zhuzhoma, N.V. Isaenkova, “On zero-dimensional solenoidal basis sets”, Matem. sbornik, 202:3 (2011), 47–68 (In Russ) | DOI | MR | Zbl
[20] R. Bowen, “Topological entropy and Axiom A.”, Global Analysis, Proc. Sympos. Pure Math., 14, Amer. Math. Soc., 1970, 23–42 | DOI | MR
[21] I. Klapper, L.-S. Young, “Rigorous bounds of the fast dynamo growth rate involving topological entropy”, Comm. Math. Phys., 173 (1995), 623–646 | DOI | MR | Zbl