Eigenmodes of water oscillations in the closed basin of variable depth
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 2, pp. 126-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

Eigenvalue problem for variable coefficient wave equation describing small oscillations of an incompressible ideal single-layer or two-layer fluid in a closed basin with uneven bottom is discussed. Eigenmodes of oscillations are founded for the channel with functionally associated width and depth. It is shown that such eigenmodes are expressed through Chebyshev polynomials of the second kind. Some properties of the eigenmodes are found. In particular, eigenmodes are described for the following configurations of channel: 1) constant width, 2) constant depth, 3) "coherent’’ channel of variable width and depth. In the first case the parametric form and in two other cases the explicit form of eigenmodes are found. In conclusion, the physical interpretation and the feasibility of the obtained solutions are discussed.
Mots-clés : varible-coefficient wave equation, Klein–Gordon equation, Sturm–Liouville problem
Keywords: Chebyshev polynomials of the second kind, water oscillations in the closed basin.
@article{SVMO_2017_19_2_a11,
     author = {A. V. Bagaev and E. N. Pelinovsky},
     title = {Eigenmodes of water oscillations in the closed basin of variable depth},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {126--138},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a11/}
}
TY  - JOUR
AU  - A. V. Bagaev
AU  - E. N. Pelinovsky
TI  - Eigenmodes of water oscillations in the closed basin of variable depth
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 126
EP  - 138
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a11/
LA  - ru
ID  - SVMO_2017_19_2_a11
ER  - 
%0 Journal Article
%A A. V. Bagaev
%A E. N. Pelinovsky
%T Eigenmodes of water oscillations in the closed basin of variable depth
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 126-138
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a11/
%G ru
%F SVMO_2017_19_2_a11
A. V. Bagaev; E. N. Pelinovsky. Eigenmodes of water oscillations in the closed basin of variable depth. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 2, pp. 126-138. http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a11/

[1] G. Bluman, “On mapping linear partial differential equations to constant coefficient equations”, SIAM J. Appl. Math., 43 (1983), 1259–1273 | DOI | MR | Zbl

[2] E. Varley, B. Seymour, “A method for obtaining exact solutions to partial differential equations with variable coefficients”, Stud. Appl. Math., 78 (1988), 183–225 | DOI | MR | Zbl

[3] R. Grimshaw, D. Pelinovsky, E. Pelinovsky, “Homogenization of the variable-speed wave equation”, Wave Motion, 47:12 (2010), 496–507 | DOI | MR | Zbl

[4] A. V. Bagaev, E. N. Pelinovsky, “The configuration of the variable cross-section channel allowed reflectionless propagation of internal waves in the ocean”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 18:3 (2016), 127–-136 (In Russ.)

[5] T. G. Talipova, E. N. Pelinovsky, O. E. Kurkina, E. A. Rouvinskaya, A. R. Giniyatullin,A. A. Naumov, “Nonreflective propagation of internal waves in a channel of variable cross-section and depth”, Fundamental'naya i prikladnaya gidrofizika, 6:3 (2013), 46–53 (In Russ.)

[6] V. U. Lyapidevsky, V. M. Teshukov, Mathematical model of propagation of long waves in an inhomogeneous fluid, SO RAN, Novosibirsk, 2000, 419 pp. (In Russ.)

[7] P. K. Suetin, Classical orthogonal polynomials, Fizmatlit, Moscow, 2005, 480 pp. (In Russ.) | MR

[8] J. C. Mason, D. C. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC, 2003, 335 pp. | MR | Zbl

[9] L.N. Sretinsky, The theory of wave motions of fluid, Nauka Publ., Moscow, 1977, 816 pp. (In Russ.)

[10] E. N. Pelinovsky, Tsunami Wave Hydrodynamics, Institute Applied Physics Press, Nizhny Novgorod, 1996, 176 pp. (In Russ.)

[11] E. N. Pelinovsky, I.I. Didenkulova, A.A. Kurkin, A.A. Rodin, O.I. Didenkulov, Analytical theory of sea waves runup on the coast, Nizhny Novgorod State Technical University, Nizhny Novgorod, 2015, 113 pp. (In Russ.)

[12] I. Didenkulova, E. Pelinovsky, T. Soomere, “Long surface wave dynamics along a convex bottom”, J. Geophysical Research - Oceans, 114:C07006 (2009)

[13] I. I. Didenkulovaa, E. N. Pelinovsky, “Reflection of a Long Wave from an Underwater Slope”, Oceanology, 51:4 (2011), 606–611 (In Russ.)