Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2017_19_2_a11, author = {A. V. Bagaev and E. N. Pelinovsky}, title = {Eigenmodes of water oscillations in the closed basin of variable depth}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {126--138}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a11/} }
TY - JOUR AU - A. V. Bagaev AU - E. N. Pelinovsky TI - Eigenmodes of water oscillations in the closed basin of variable depth JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2017 SP - 126 EP - 138 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a11/ LA - ru ID - SVMO_2017_19_2_a11 ER -
%0 Journal Article %A A. V. Bagaev %A E. N. Pelinovsky %T Eigenmodes of water oscillations in the closed basin of variable depth %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2017 %P 126-138 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a11/ %G ru %F SVMO_2017_19_2_a11
A. V. Bagaev; E. N. Pelinovsky. Eigenmodes of water oscillations in the closed basin of variable depth. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 2, pp. 126-138. http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a11/
[1] G. Bluman, “On mapping linear partial differential equations to constant coefficient equations”, SIAM J. Appl. Math., 43 (1983), 1259–1273 | DOI | MR | Zbl
[2] E. Varley, B. Seymour, “A method for obtaining exact solutions to partial differential equations with variable coefficients”, Stud. Appl. Math., 78 (1988), 183–225 | DOI | MR | Zbl
[3] R. Grimshaw, D. Pelinovsky, E. Pelinovsky, “Homogenization of the variable-speed wave equation”, Wave Motion, 47:12 (2010), 496–507 | DOI | MR | Zbl
[4] A. V. Bagaev, E. N. Pelinovsky, “The configuration of the variable cross-section channel allowed reflectionless propagation of internal waves in the ocean”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 18:3 (2016), 127–-136 (In Russ.)
[5] T. G. Talipova, E. N. Pelinovsky, O. E. Kurkina, E. A. Rouvinskaya, A. R. Giniyatullin,A. A. Naumov, “Nonreflective propagation of internal waves in a channel of variable cross-section and depth”, Fundamental'naya i prikladnaya gidrofizika, 6:3 (2013), 46–53 (In Russ.)
[6] V. U. Lyapidevsky, V. M. Teshukov, Mathematical model of propagation of long waves in an inhomogeneous fluid, SO RAN, Novosibirsk, 2000, 419 pp. (In Russ.)
[7] P. K. Suetin, Classical orthogonal polynomials, Fizmatlit, Moscow, 2005, 480 pp. (In Russ.) | MR
[8] J. C. Mason, D. C. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC, 2003, 335 pp. | MR | Zbl
[9] L.N. Sretinsky, The theory of wave motions of fluid, Nauka Publ., Moscow, 1977, 816 pp. (In Russ.)
[10] E. N. Pelinovsky, Tsunami Wave Hydrodynamics, Institute Applied Physics Press, Nizhny Novgorod, 1996, 176 pp. (In Russ.)
[11] E. N. Pelinovsky, I.I. Didenkulova, A.A. Kurkin, A.A. Rodin, O.I. Didenkulov, Analytical theory of sea waves runup on the coast, Nizhny Novgorod State Technical University, Nizhny Novgorod, 2015, 113 pp. (In Russ.)
[12] I. Didenkulova, E. Pelinovsky, T. Soomere, “Long surface wave dynamics along a convex bottom”, J. Geophysical Research - Oceans, 114:C07006 (2009)
[13] I. I. Didenkulovaa, E. N. Pelinovsky, “Reflection of a Long Wave from an Underwater Slope”, Oceanology, 51:4 (2011), 606–611 (In Russ.)