On the simplest Morse-Smale flows with heteroclinical intersections on the sphere $S^n$
Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 2, pp. 25-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is the first step in stydying structure of decomposition of phase space with dimension $n\geq 4$ on the trajectories of Morse-Smale flows (structurally stable flows with non-wandering set consisting of finite number of equilibria and closed trajectories) allowing heteroclinic intersections. More precisely, special class of Morse-Smale flows on the sphere $S^n$ is studied. The non-wandering set of the flow of interest consists of two nodal and two saddle equilibrium states. It is proved that for every flow from the class under consideration the intersection of invariant manifolds of two different saddle equilibrium states is nonempty and consists of a finite number of connectivity components. Heteroclinic intersections are mathematical models for magnetic field separators. Study of their structure, as well as the question of their existence, is one of the principal problems of magnetic hydrodynamics.
Keywords: Morse-Smale flows, heteroclinic intersections.
@article{SVMO_2017_19_2_a1,
     author = {E. Ya. Gurevich and D. A. pavlova},
     title = {On the simplest {Morse-Smale} flows with heteroclinical intersections on the sphere  $S^n$},
     journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {25--30},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a1/}
}
TY  - JOUR
AU  - E. Ya. Gurevich
AU  - D. A. pavlova
TI  - On the simplest Morse-Smale flows with heteroclinical intersections on the sphere  $S^n$
JO  - Žurnal Srednevolžskogo matematičeskogo obŝestva
PY  - 2017
SP  - 25
EP  - 30
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a1/
LA  - ru
ID  - SVMO_2017_19_2_a1
ER  - 
%0 Journal Article
%A E. Ya. Gurevich
%A D. A. pavlova
%T On the simplest Morse-Smale flows with heteroclinical intersections on the sphere  $S^n$
%J Žurnal Srednevolžskogo matematičeskogo obŝestva
%D 2017
%P 25-30
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a1/
%G ru
%F SVMO_2017_19_2_a1
E. Ya. Gurevich; D. A. pavlova. On the simplest Morse-Smale flows with heteroclinical intersections on the sphere  $S^n$. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 2, pp. 25-30. http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a1/

[1] A. Andronov, E. Leontovich, I. Gordon, A. Mayer, Qualitative theory of dynamical systems of the second order, Nauka, M., 1966, 568 pp. (In Russ.) | MR

[2] G. Fleitas, “Classification of gradient-like flows in dimension two and three”, Bol. Soc. Mat. Brasil, 6 (1975), 155 - 183 | DOI | MR | Zbl

[3] Y. Umanskii, “Nessecary and sufficient conditions of topological equivalence of three-dimensional Morse-Smale dynamical systems with finite number of singular trajectories”, Sbornic Mathematics, 181:2 (1990), 212 - 239 (In Russ.)

[4] S. Pilyugin, “Phaze diagrammes defined Morse-Smale dynamical systems without periodical trajectories on spheres”, Differencialnye uravneniya, 14:2 (1978), 245-254 (In Russ.) | MR | Zbl

[5] V. Grines, E. Zhuzhoma, V. Medvedev, “On Morse–Smale Diffeomorphisms with Four Periodic Points on Closed Orientable Manifolds”, Mathematical Notes, 74:3 (2003), 352–366 (In Russ.) | DOI | MR | Zbl

[6] Ch. Bonatti, V. Grines, V. Medvedev and E. Pecou, “Three-manifolds admitting Morse-Smale diffeomorphisms without heteroclinic curves”, Topology and its applications, 117 (2002), 335-344 | DOI | MR | Zbl

[7] V. Grines, E. V. Zhuzhoma, O. Pochinka, T. V. Medvedev, “On heteroclinic separators of magnetic fields in electrically conducting fluids”, Physica D: Nonlinear Phenomena, 294 (2015), 1-5 | DOI | MR | Zbl

[8] V. Grines, E. Gurevich, O. Pochinka, “On the number of heteroclinic curves of diffeomorphisms with surface dynamics”, Regular and Chaotic Dynamics, 22:2 (2017), 122-135 | DOI | MR | Zbl

[9] V. Grines, E. Gurevich, O. Pochinka, “Topological classification of Morse-Smale diffeomorphisms without heteroclinic intersection”, Journal of Mathematical Sciences, 208:1 (2015), 81-91 | DOI | MR

[10] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747 - 817 | DOI | MR | Zbl