Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SVMO_2017_19_2_a1, author = {E. Ya. Gurevich and D. A. pavlova}, title = {On the simplest {Morse-Smale} flows with heteroclinical intersections on the sphere $S^n$}, journal = {\v{Z}urnal Srednevol\v{z}skogo matemati\v{c}eskogo ob\^{s}estva}, pages = {25--30}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a1/} }
TY - JOUR AU - E. Ya. Gurevich AU - D. A. pavlova TI - On the simplest Morse-Smale flows with heteroclinical intersections on the sphere $S^n$ JO - Žurnal Srednevolžskogo matematičeskogo obŝestva PY - 2017 SP - 25 EP - 30 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a1/ LA - ru ID - SVMO_2017_19_2_a1 ER -
%0 Journal Article %A E. Ya. Gurevich %A D. A. pavlova %T On the simplest Morse-Smale flows with heteroclinical intersections on the sphere $S^n$ %J Žurnal Srednevolžskogo matematičeskogo obŝestva %D 2017 %P 25-30 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a1/ %G ru %F SVMO_2017_19_2_a1
E. Ya. Gurevich; D. A. pavlova. On the simplest Morse-Smale flows with heteroclinical intersections on the sphere $S^n$. Žurnal Srednevolžskogo matematičeskogo obŝestva, Tome 19 (2017) no. 2, pp. 25-30. http://geodesic.mathdoc.fr/item/SVMO_2017_19_2_a1/
[1] A. Andronov, E. Leontovich, I. Gordon, A. Mayer, Qualitative theory of dynamical systems of the second order, Nauka, M., 1966, 568 pp. (In Russ.) | MR
[2] G. Fleitas, “Classification of gradient-like flows in dimension two and three”, Bol. Soc. Mat. Brasil, 6 (1975), 155 - 183 | DOI | MR | Zbl
[3] Y. Umanskii, “Nessecary and sufficient conditions of topological equivalence of three-dimensional Morse-Smale dynamical systems with finite number of singular trajectories”, Sbornic Mathematics, 181:2 (1990), 212 - 239 (In Russ.)
[4] S. Pilyugin, “Phaze diagrammes defined Morse-Smale dynamical systems without periodical trajectories on spheres”, Differencialnye uravneniya, 14:2 (1978), 245-254 (In Russ.) | MR | Zbl
[5] V. Grines, E. Zhuzhoma, V. Medvedev, “On Morse–Smale Diffeomorphisms with Four Periodic Points on Closed Orientable Manifolds”, Mathematical Notes, 74:3 (2003), 352–366 (In Russ.) | DOI | MR | Zbl
[6] Ch. Bonatti, V. Grines, V. Medvedev and E. Pecou, “Three-manifolds admitting Morse-Smale diffeomorphisms without heteroclinic curves”, Topology and its applications, 117 (2002), 335-344 | DOI | MR | Zbl
[7] V. Grines, E. V. Zhuzhoma, O. Pochinka, T. V. Medvedev, “On heteroclinic separators of magnetic fields in electrically conducting fluids”, Physica D: Nonlinear Phenomena, 294 (2015), 1-5 | DOI | MR | Zbl
[8] V. Grines, E. Gurevich, O. Pochinka, “On the number of heteroclinic curves of diffeomorphisms with surface dynamics”, Regular and Chaotic Dynamics, 22:2 (2017), 122-135 | DOI | MR | Zbl
[9] V. Grines, E. Gurevich, O. Pochinka, “Topological classification of Morse-Smale diffeomorphisms without heteroclinic intersection”, Journal of Mathematical Sciences, 208:1 (2015), 81-91 | DOI | MR
[10] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747 - 817 | DOI | MR | Zbl